Journal Home > Volume 1 , Issue 2

Rapid progress in graphene-based applications is calling for new processing techniques for creating graphene components with different shapes, sizes, and edge structures. Here we report a controlled cutting process for graphene sheets, using nickel nanoparticles as a knife that cuts with nanoscale precision. The cutting proceeds via catalytic hydrogenation of the graphene lattice, and can generate graphene pieces with specific zigzag or armchair edges. The size of the nanoparticle dictates the edge structure that is produced during the cutting. The cutting occurs along straight lines and along symmetry lines, defined by angles of 60° or 120°, and is deflected at free edges or defects, allowing practical control of graphene nano-engineering.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlled Nanocutting of Graphene

Show Author's information Lijie Ci1( )Zhiping Xu1Lili Wang2Wei Gao1Feng Ding1Kevin F. Kelly2Boris I. Yakobson1Pulickel M. Ajayan1( )
Department of Mechanical Engineering & Materials Science, Rice UniversityHouston TX 77005 USA
Department of Electrical and Computer Engineering, Rice UniversityHouston TX 77005 USA

Abstract

Rapid progress in graphene-based applications is calling for new processing techniques for creating graphene components with different shapes, sizes, and edge structures. Here we report a controlled cutting process for graphene sheets, using nickel nanoparticles as a knife that cuts with nanoscale precision. The cutting proceeds via catalytic hydrogenation of the graphene lattice, and can generate graphene pieces with specific zigzag or armchair edges. The size of the nanoparticle dictates the edge structure that is produced during the cutting. The cutting occurs along straight lines and along symmetry lines, defined by angles of 60° or 120°, and is deflected at free edges or defects, allowing practical control of graphene nano-engineering.

Keywords: Graphene, electronics, nano-engineering, catalytic hydrogenation

References(23)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D., Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov. A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

3

Zhang, Y.; Tan, J. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

4

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 2006, 97, 016801.

5

McCann, E.; Kechedzhi, K.; Fal’ko, V. I.; Suzuura, H.; Ando, T.; Altshuler, B. L. Weak-localisation magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 2006, 97, 146805.

6

Van Noorden, R. Moving towards a graphene world. Nature 2006, 442, 228–229.

7

Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K.; Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2005, 71, 193406.

8

Son, Y.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

9

Son, Y.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

10

Wang, W. L.; Meng, S.; Kaxiras, E. Graphene nanoflakes with large spin. Nano Lett. 2008, 8, 241–245.

11

Fernández-Rossier, J.; Palacios, J. J. Magnetism in graphene nanoislands. Phys. Rev. Lett. 2007, 99, 177204.

12

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

13

Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

14

Tomita A.; Tamai, Y. An optical microscopic study on the catalytic hydrogenation of graphite. J. Phys. Chem. 1974, 78, 2254–2258.

15

Keep, C. W.; Terry, S.; Wells, M. Studies of the nickel-catalyzed hydrogenation of graphite. J. Catal. 1980, 66, 451–462.

16

Baker, R. T. K.; Sherwood, R. D.; Derouane, E. G. Further studies of the nickel/graphite-hydrogen reaction. J. Catal. 1982, 75, 382–395.

17

Goethel, P. J.; Yang, R. T. Mechanism of graphite hydrogenation catalyzed by nickel. J. Catal. 1987, 108, 356–363.

18

Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.

19

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

20

Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen F.; Nørskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

21

Ding, F.; Larsson, P.; Larsson, J. A.; Ahuja, R.; Duan, H.; Rosen A.; Bolton, K. The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 2008, 8, 463–468.

22

Chang, H.; Bard, A. J. Scanning tunneling microscopy studies of carbon-oxygen reactions on highly oriented pyrolytic graphite. J. Am. Chem. Soc. 1991, 113, 5588–5596.

23

Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.

Video
nr-1-2-116_ESM2.mov
File
nr-1-2-116_ESM1.pdf (528.3 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 June 2008
Revised: 02 July 2008
Accepted: 02 July 2008
Published: 31 July 2008
Issue date: February 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

The authors (P. M. Ajayan, L. Ci., W. Gao) acknowledge support from the Interconnect Focus Center, one of five research centers funded under the Focus Center Research Program, a Semiconductor Research Corporation program.

Rights and permissions

Return