AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (551.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

From Two-Dimensional Metal—Organic Coordination Networks to Near-Infrared Luminescent PbS Nanoparticle/Layered Polymer Composite Materials

Fang Cui1Junhu Zhang1Tieyu Cui2Sen Liang1Bao Li1Quan Lin1Bai Yang1( )
State Key Lab of Supramolecular Structure and Materials College of Chemistry, Jilin UniversityChangchun 130012 China
Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of SciencesShenyang 110016 China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2-D) layered metal-organic coordination (lead methacrylate (LDMA)) networks have been prepared in aqueous solution under mild conditions and their structure determined by single crystal diffraction. As the ligand used in our experiments is easily polymerized, these metal-organic coordination layers are therefore employed as precursors to fabricate cross-linked polymer layered materials through γ-irradiated polymerization. The stabilities of the samples are significantly improved after γ-irradiation. To our knowledge, this is the first time that covalent bonded polymer layered structures have been fabricated without the assistance of added surfactant or template. Such layered polymer materials cannot only act as alternatives to layered inorganic materials in some caustic environments, but also allow the generation of PbS nanoparticles (NPs) without aggregation in the polymer matrix. By exposing the polymer layer to H2S gas at room temperature, uniform PbS nanoparticles with an average size of about 6 nm are generated in situ. In addition, the resulting PbS NPs exhibit near-infrared (NIR) luminescent properties, which suggests the composite materials may be useful as active optical elements at communication wavelengths from 1300 to 1550 nm.

Electronic Supplementary Material

Download File(s)
nr-1-3-195_ESM1.pdf (121.9 KB)
nr-1-3-195_ESM2.CIF (12.8 KB)

References

1

Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle polymer composites: Where two small worlds meet. Science 2006, 314, 1107–1110.

2

Wise, F. W. Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773–780.

3

Peterson, J. J.; Krauss, T. D. Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Lett. 2006, 6, 510–514.

4

Patel, A. A.; Wu, F.; Zhang, J. Z.; Torres-Martinez, C. L.; Mehra, R. K.; Yang, Y.; Risbud, S. H. Synthesis, optical spectroscopy and ultrafast electron dynamics of PbS nanoparticles with different surface capping. J. Phys. Chem. B 2000, 104, 11598–11605.

5

Wang, Y. Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc. Chem. Res. 1991, 24, 133–139.

6

Liu, B.; Li, H.; Chew, C. H.; Que, W.; Lam, Y. L.; Kam, C. H.; Gan, L. M.; Xu, G. Q. PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime. Mater. Lett. 2001, 51, 461–469.

7

Hines, M. A.; Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849.

8

Lim, W. P.; Low, H. Y.; Chin, W. S. IR-luminescent PbS-polystyrene nanocomposites prepared from random ionomers in solution. J. Phys. Chem. B 2004, 108, 13093–13099.

9

Bakueva, L.; Musikhin, S.; Hines, M. A.; Chang, T. W. F.; Tzolov, M.; Scholes, G. D.; Sargent, E. H. Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in semiconducting polymer. Appl. Phys. Lett. 2003, 82, 2895–2897.

10

Winiarz, J. G.; Zhang, L.; Park, J.; Prasad, P. N. Inorganic: Organic hybrid nanocomposites for photorefractivity at communication wavelengths. J. Phys. Chem. B 2002, 106, 967–970.

11

Bakueva, L.; Gorelikov, I.; Musikhin, S.; Zhao, X. S.; Sargent, E. H.; Kumacheva, E. PbS quantum dots with stable efficient luminescence in the near-IR spectral range. Adv. Mater. 2004, 16, 926–929.

12

McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142.

13

Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865–871.

14

Hoogland, S.; Sukhovatkin, V.; Howard, I.; Cauchi, S.; Levina, L.; Sargent, E. H. A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength. Opt. Express 2006, 14, 3273–3281.

15

Lü, C.; Guan, C.; Liu, Y.; Cheng, Y.; Yang, B. PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 2005, 17, 2448–2454.

16

Wang, S.; Yang, S. Preparation and characterization of oriented PbS crystalline nanorods in polymer films. Langmuir 2000, 16, 389–397.

17

Cui, T.; Cui. F.; Zhang, J.; Wang, J.; Huang, J.; Lü, C.; Chen, Z.; Yang, B. From monomeric nanofibers to PbS/polymer composite nanofibers through the combined use of γ-irradiation and gas/solid reaction. J. Am. Chem. Soc. 2006, 128, 6298–6299.

18
Auerbach, S. M.; Carrado, K. A.; Dutta, P. K., Eds. Handbook of Layered Materials; Marcel Dekker: New York, 2004.https://doi.org/10.1201/9780203021354
19

Su, W.; Hong, M.; Weng, J.; Cao, R.; Lu, S. A semiconducting lamella polymer [{Ag(C5H4NS)}n] with a graphite-like array of silver (Ⅰ) lons and its analogue with a layered structure. Angew. Chem. Int. Ed. 2000, 39, 2911–2914.

20

Darder, M.; Aranda, P.; Ruiz-Hitzky, E. Bionanocomposites: A new concept of ecological, bioinspired, and functuional hybrid materials. Adv. Mater. 2007, 19, 1309–1319.

21

Clearfield, A. Role of ion exchange in solid-state chemistry. Chem. Rev. 1988, 88, 125–148.

22

Kumar, C. V.; Chaudhari, A. Proteins immobilized at the galleries of layered α-zirconium phosphate: Structure and activity studies. J. Am. Chem. Soc. 2000, 122, 830–837.

23

Bonhomme, F.; Alam, T. M.; Celestian, A. J.; Tallant, D. R.; Boyle, T. J.; Cherry, B. R.; Tissot, R. G.; Rodriguez, M. A.; Parise, J. B.; Nyman, M. Tribasic lead maleate and lead maleate: Synthesis and structural and spectroscopic characterizations. Inorg. Chem. 2005, 44, 7394–7402.

24

Pan, L.; Huang, X.; Li, J.; Wu, Y.; Zheng, N. Novel single- and double-layer and three-dimensional structures of rare-earth metal coordination polymers: The effect of lanthanide contraction and acidity control in crystal structure formation. Angew. Chem. Int. Ed. 2000, 39, 527–530.

25

Xu, H.; Li, Y. The organic ligands as template: The synthesis, structures and properties of a series of the layered structure rare-earth coordination polymers. J. Mol. Struct. 2004, 690, 137–143.

26

Rogow, D. L.; Zapeda, G.; Swanson, C. H.; Fan, X.; Campana, C. F.; Oliver, A. G.; Oliver, S. R. J. A metal–organic framework containing cationic inorganic layers: Pb2F2[C2H4(SO3)2]. Chem. Mater. 2007, 19, 4658–4662.

27

Noro, S. I.; Horike, S.; Tanaka, D.; Kitagawa, S.; Akutagawa, T.; Nakamura, T. Flexible and shape-selective guest binding at Cu axial sites in 1-dimensional Cu-1, 2-bis(4-pyridyl)ethane coordination polymers. Inorg. Chem. 2006, 45, 9290–9300.

28

Shi, F. N.; Cunha-Silva, L.; Sá Ferreira, R. A.; Mafra, L.; Trindade, T.; Carlos, L. D.; Almeida Paz, F. A.; Rocha, J. Interconvertable modular framework and layered lanthanide (Ⅲ)-etidronic acid coordination polymers. J. Am. Chem. Soc. 2008, 130, 150–167.

29

Zhao, Y.; Hong, M.; Liang, Y.; Cao, R.; Li, W.; Weng, J.; Lu, S. A paramagnetic lamellar polymer with a high semiconductivity. Chem. Commun. 2001, 1020–1021.

30

Williams, D. J.; Maginn, S. J.; Davey, R. J. The X-ray crystal structure of lead acetophthalate, Pb(CH3COO)24[PbC6H4(COO)2]. Polyhedron 1994, 13, 1683-1688.

31

Sellinger, A.; Weiss, P. M.; Nguyen, A.; Lu, Y.; Assink, R. A.; Gong, W.; Brinker, C. J. Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre. Nature 1998, 394, 256–260.

32

Wang, Y.; Suna, A.; Mahler, W.; Kasowski, R. PbS in polymers. From molecules to bulk solids. J. Chem. Phys. 1987, 87, 7315–7322.

33

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

34

Peng, X.; Wickham, J.; Alivisatos, A. P. Kinetics of Ⅱ–Ⅵ and Ⅲ–Ⅴ colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

35

Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

Nano Research
Pages 195-202
Cite this article:
Cui F, Zhang J, Cui T, et al. From Two-Dimensional Metal—Organic Coordination Networks to Near-Infrared Luminescent PbS Nanoparticle/Layered Polymer Composite Materials. Nano Research, 2008, 1(3): 195-202. https://doi.org/10.1007/s12274-008-8019-2

704

Views

17

Downloads

9

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 10 April 2008
Revised: 06 June 2008
Accepted: 24 June 2008
Published: 01 March 2008
© Tsinghua Press and Springer-Verlag 2008

This article is published with open access at Springerlink.com

Return