Journal Home > Volume 1 , Issue 2

Quantum mechanical molecular dynamics simulations show that electrically neutral carbon nanotubes or fullerene balls housed in an outer carbon nanotube can be driven into motion by charging the outer tube uniformly. Positively and negatively charged outer tube are found to have quite different actions on the initially neutral nanotubes or fullerene balls. A positively charged tube can drive out the molecule inside it out at speeds over 1 km/s, just like a "nanogun", while a negatively charged tube can drive the molecule into oscillation inside it and can absorb inwards a neutral molecule in the vicinity of its open end, like a "nano-manipulator". The results demonstrate that changing the charge environment in specific ways may open the door to conceptually new nano/molecular electromechanical devices.


menu
Abstract
Full text
Outline
About this article

Simulation Studies of a "Nanogun" Based on Carbon Nanotubes

Show Author's information Dai YitaoChun TangWanlin Guo( )
Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, ChinaNanjing 210016 China

Abstract

Quantum mechanical molecular dynamics simulations show that electrically neutral carbon nanotubes or fullerene balls housed in an outer carbon nanotube can be driven into motion by charging the outer tube uniformly. Positively and negatively charged outer tube are found to have quite different actions on the initially neutral nanotubes or fullerene balls. A positively charged tube can drive out the molecule inside it out at speeds over 1 km/s, just like a "nanogun", while a negatively charged tube can drive the molecule into oscillation inside it and can absorb inwards a neutral molecule in the vicinity of its open end, like a "nano-manipulator". The results demonstrate that changing the charge environment in specific ways may open the door to conceptually new nano/molecular electromechanical devices.

Keywords: carbon nanotube, Energy conversion, neutral molecule, driving mechanisms

References(31)

1

Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

2

de Jonge, N.; Lamy, Y.; Schoots, K.; Oosterkamp, T. H. High brightness electron beam from a multi-walled carbon nanotube. Nature 2002, 420, 393–395.

3

Moseler, M.; Landman, U. Formation, stability, and breakup of nanojets. Science 2000, 289, 1165–1169.

4

Fennimore, A. M.; Yuzvinsky, T. D.; Han, W. Q.; Fuhrer, M. S.; Cumings, J.; Zettl, A. Rotational actuators based on carbon nanotubes. Nature 2003, 424, 408–410.

5

Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Carbon nanotube actuators. Science 1999, 284, 1340–1344.

6

Siwy, Z.; Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 2002, 89, 198103.

7

Léger, Y.; Besombes, L.; Fernández-Rossier, J.; Maingault, L.; Mariette, H. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett. 2006, 97, 107401.

8

Ahn, C. H. K.; Rabe, M.; Triscone, J. -M. Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 2004, 303, 488–491.

9

Gong, X.; Li, J. Lu, H.; Wan, R.; Li, J.; Hu, J.; Fang, H. A charge-driven molecular water pump. Nat. Nanotechnol. 2007, 2, 709–712.

10

Hinds, B. Molecular dynamics: A blueprint for a nanoscale pump. Nat. Nanotechnol. 2007, 2, 673–674.

11

Yoshida, M.; Muneyuki, E.; Hisabori, T. ATP synthase – A marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Bio. 2001, 2, 669–677.

12

Soong, R. K.; Bachand, G. D.; Neves, H. P.; Olkhovets, A. G.; Craighead, H. G. Montemagno, C. D. Powering an inorganic nanodevice with a biomolecular motor. Science 2000, 290, 1555–1558.

13

Ahern, C. A.; Horn, R. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 2004, 27, 303–307.

14

Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.; Aida, T. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 2003, 423, 628–632.

15

Sigworth, F. J. Structural biology: Life's transistors. Nature 2003, 423, 21–22.

16

Perozo, E.; Rees, D. C. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struc. Biol. 2003, 13, 432–442.

17

Service, R. F. Superstrong nanotubes show they are smart, too. Science 1998, 281, 940–942.

18

Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. P. Natl. Acad. Sci. USA 2003, 100, 4984–4989.

19

Guo, W.; Guo, Y. Giant axial electrostrictive deformation in carbon nanotubes. Phys. Rev. Lett. 2003, 91, 115501.

20

Lee, J.; Kim, H.; Kahng, S. -J.; Kim, G.; Son, Y. -W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; Kuk, Y. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002, 415, 1005–1008.

21

Kwon, Y. K.; Tománek, D. Iijima, S. "Bucky shuttle" memory device: Synthetic approach and molecular dynamics simulations. Phys. Rev. Lett. 1999, 82, 1470–1473.

22

Cumings, J.; Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 2000, 289, 602–604.

23

Guo, W.; Guo, Y.; Gao, H.; Zheng, Q.; Zhong, W. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91, 125501.

24

Cummings, J.; Zettl, A. Localization and nonlinear resistance in telescopically extended nanotubes. Phys. Rev. Lett. 2004, 93, 086801.

25

Rydberg, H.; Dion, M.; Jacobson, N.; Schröder, E.; Hyldgaard, P.; Simak, S. I.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for layered structures. Phys. Rev. Lett. 2003, 91, 126402.

26

Stewart, J. J. P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10, 209–220.

27

Stewart, J. J. P. Optimization of parameters for semiempirical methods Ⅱ. applications. J. Comput. Chem. 1989, 10, 221–264.

28

Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

29

Poncharal, P.; Wang, Z. L.; Ugarte, D.; Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516.

30

Keblinski, P.; Nayak, S. K.; Zapol, P.; Ajayan, P. M. Charge distribution and stability of charged carbon nanotubes. Phys. Rev. Lett. 2002, 89, 255503.

31

Wei, B. Q.; D'Arcy-Gall, J.; Ajayan, P. M.; Ramanath, G. Tailoring structure and electrical properties of carbon nanotubes using kilo-electron-volt ions. Appl. Phys. Lett. 2003, 83, 3851–3853.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 May 2008
Revised: 30 June 2008
Accepted: 30 June 2008
Published: 31 July 2008
Issue date: February 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

The work is supported by the 973 Program (2007 CB936204), the Ministry of Education (No. 705021, IRT0534), and NSF (10732040) of China

Rights and permissions

Return