Journal Home > Volume 1 , Issue 2

Crystalline ErCl3 nanowires have been fabricated in single-walled carbon nanotubes (SWCNTs) with high yield (~90%), and the structural and magnetic properties of the resulting ErCl3 nanowires encapsulated in SWCNTs (ErCl3@SWCNTs) characterized. Encapsulation under high temperature and vacuum using high quality SWCNTs results in a high filling-ratio of ErCl3 nanowires in the SWCNTs. The high filling-ratio of ErCl3 nanowires and the use of highly pure SWCNTs with only a small amount of residual Fe catalyst nanoparticles enabled us to observe the magnetic properties of ErCl3@SWCNTs. Structure determination based on simulated annealing calculations and high-resolution transmission electron microscope (HRTEM) image simulations revealed that the structure of the ErCl3 nanowires is unusual with respect to the coordination environment of the Eu3+ ions. This work opens up new possibilities to fabricate various metal complex nanowires with high yield and may also be of more general importance in understanding and exploring magnetic properties in low-dimensional magnetic systems.


menu
Abstract
Full text
Outline
About this article

High Yield Synthesis and Characterization of the Structural and Magnetic Properties of Crystalline ErCl3 Nanowires in Single-Walled Carbon Nanotube Templates

Show Author's information Ryo Kitaura1Daisuke Ogawa1keita Kobayashi1Takeshi Saito2,3Satoshi Ohshima2Tetsuya Nakamura4Hirofumi Yoshikawa1Kunio Awaga1Hisanori Shinohara1( )
Department of Chemistry and Institute for Advanced Research, Graduate School of Science, Nagoya UniversityNagoya 464-8602 Japan
Nanotube Research Center , National Institute of Advanced Industrial Science and Technology Tsukuba 305-8565 Japan
PRESTO, Japan, Science and Technology Agency, 4-1-8 Honcho kawaguchi Saitama 332-0012 Japan
Japan Synchrotron Radiation Research Institute Hyogo 679-5198 Japan

Abstract

Crystalline ErCl3 nanowires have been fabricated in single-walled carbon nanotubes (SWCNTs) with high yield (~90%), and the structural and magnetic properties of the resulting ErCl3 nanowires encapsulated in SWCNTs (ErCl3@SWCNTs) characterized. Encapsulation under high temperature and vacuum using high quality SWCNTs results in a high filling-ratio of ErCl3 nanowires in the SWCNTs. The high filling-ratio of ErCl3 nanowires and the use of highly pure SWCNTs with only a small amount of residual Fe catalyst nanoparticles enabled us to observe the magnetic properties of ErCl3@SWCNTs. Structure determination based on simulated annealing calculations and high-resolution transmission electron microscope (HRTEM) image simulations revealed that the structure of the ErCl3 nanowires is unusual with respect to the coordination environment of the Eu3+ ions. This work opens up new possibilities to fabricate various metal complex nanowires with high yield and may also be of more general importance in understanding and exploring magnetic properties in low-dimensional magnetic systems.

Keywords: magnetic properties, carbon nanotubes, crystal structure, Low-dimensional nanomaterials, transmission electron microscope

References(19)

1

Hu, Y. J.; Xiang, J.; Liang, G. C.; Yan, H.; Lieber, C. M. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 2008, 8, 925–930.

2

Kitaura, R.; Imazu, N.; Kobayashi, K.; Shinohara, H. Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett. 2008, 8, 693–699.

3

Ohnishi, H.; Kondo, Y.; Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 1998, 395, 780–783.

4

Ishii, H.; Kataura, H.; Shiozawa, H.; Yoshioka, H.; Otsubo, H.; Takayama, Y.; Miyahara, T.; Suzuki, S.; Achiba, Y.; Nakatake, M., Narimura, T.; Higashiguchi, M.; Shimada, K.; Namatame, H.; Taniguchi, M. Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 2003, 426, 540–544.

5

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

6

Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.

7

Hornbaker, D. J.; Kahng, S. J.; Misra, S.; Smith, B. W.; Johnson, A. T.; Mele, E. J.; Luzzi, D. E.; Yazdani, A. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 2002, 295, 828–831.

8

Kitaura, R.; Shinohara, H. Carbon-nanotube-based hybrid materials: Nanopeapods. Chem–Asian J. 2006, 1, 646–655.

9

Britz, D. A.; Khlobystov, A. N.; Porfyrakis, K.; Ardavan, A.; Briggs, G. A. D. Chemical reactions inside single-walled carbon nano test-tubes. Chem. Commun. 2005, 37–39.

10

Smith, B. W.; Monthioux, M.; Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 1998, 396, 323–324.

11

Bandow, S.; Hiraoka, T.; Yumura, T.; Hirahara, K.; Shinohara, H.; Iijima, S. Raman scattering study on fullerene derived intermediates formed within single-wall carbon nanotube: From peapod to double-wall carbon nanotube. Chem. Phys. Lett. 2004, 384, 320–325.

12

Carter, R.; Sloan, J.; Kirkland, A. I.; Meyer, R. R.; Lindan, P. J. D.; Lin, G.; Green, M. L. H.; Vlandas, A.; Hutchison, J. L.; Harding, J. Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. Phys. Rev. Lett. 2006, 96, 215501.

13

Philp, E.; Sloan, J.; Kirkland, A. I.; Meyer, R. R.; Friedrichs, S.; Hutchison, J. L.; Green, M. L. H. An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat. Mater. 2003, 2, 788–791.

14

Hirahara, K.; Suenaga, K.; Bandow, S.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85, 5384–5387.

15

Takenobu, T.; Takano, T.; Shiraishi, M.; Murakami, Y.; Ata, M.; Kataura, H.; Achiba, Y.; Iwasa, Y. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2003, 2, 683–688.

16

Lee, J.; Kim, H.; Kahng, S. J.; Kim, G.; Son, Y. W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; Kuk, Y. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002, 415, 1005–1008.

17

Simon, F.; Kuzmany, H.; Rauf, H.; Pichler, T.; Bernardi, J.; Peterlik, H.; Korecz, L.; Fulop, F.; Janossy, A. Low temperature fullerene encapsulation in single wall carbon nanotubes: Synthesis of N@C-60@SWCNT. Chem. Phys. Lett. 2004, 383, 362–367.

18

Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by simulated annealing. Science 1983, 220, 671–680.

19

Saito, T.; Xu, W. C.; Ohshima, S.; Ago, H.; Yumura, M.; Iijima, S. Supramolecular catalysts for the gas-phase synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 5849–5853.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 May 2008
Revised: 13 June 2008
Accepted: 17 June 2008
Published: 31 July 2008
Issue date: February 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

This work has been supported by the JST CREST Program for novel carbon nanotube materials. The XAS experiments were performed at BL25SU in SPring-8 with the approval of JASRT (Proposal No. 2007B1732)

Rights and permissions

Return