AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (804 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Wafer Scale Synthesis of Dense Aligned Arrays of Single-Walled Carbon Nanotubes

Weiwei ZhouChristopher RutherglenPeter J. Burke( )
Department of Electrical Engineering and Computer Science, University of CaliforniaIrvine CA 92697 USA
Show Author Information

Graphical Abstract

Abstract

Here we present an easy one-step approach to pattern uniform catalyst lines for the growth of dense, aligned parallel arrays of single-walled carbon nanotubes (SWNTs) on quartz wafers by using photolithography or polydimethylsiloxane (PDMS) stamp microcontact printing (μCP). By directly doping an FeCl3/methanol solution into Shipley 1827 photoresist or polyvinylpyrrolidone (PVP), various catalyst lines can be well-patterned on a wafer scale. In addition, during the chemical vapor deposition (CVD) growth of SWNTs the polymer layers play a very important role in the formation of mono-dispersed nanoparticles. This universal and efficient method for the patterning growth of SWNTs arrays on a surface is compatible with the micro-electronics industry, thus enabling of the fabrication highly integrated circuits of SWNTs.

References

1

Saito, R.; Dresselhaus, M. S.; Dresselhaus, G. Physical Properties of Carbon Nanotubes; World Scientific Publishing: Singapore, 1998.

2

Anantram, M. P.; Leonard, F. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 2006, 507, 507–561.

3

Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998, 395, 878–881.

4

Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett. 2004, 4, 447–450.

5

Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G.; Zhang, J.; Peng, L. M. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.

6

Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

7

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

8

Ismach, A.; Segev, L.; Wachtel, E.; Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 2004, 43, 6140–6143.

9

Han, S.; Liu, X.; Zhou, C. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294–5295.

10

Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.

11

Burke, P. J. AC performance of nanoelectronics: Towards a ballistic THz nanotube transistor. Solid-State Electron. 2004, 48, 1981–1986.

12

Zhen, Y; Burke, P. J. Aligned array FETs as a route towards THz nanotube transistors. Proc. SPIE–Int. Soc. Opt. Eng. 2005, 5790, 246–253.

13

Guo, J.; Hasan, S.; Javey, A.; Bosman, G.; Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 2005, 4, 715–721.

14

Hasan, S.; Salahuddin, S.; Vaidyanathan, M.; Alam, A. A. High-frequency performance projections for ballistic carbon-nanotube transistors. IEEE Trans. Nanotechnol. 2006, 5, 14–22.

15

Bethoux, J. -M.; Happy, H.; Derycke, G. D. V.; Goffman, M.; Bourgoin, J. -P. An 8-GHz fT carbon nanotube field-effect transistor for gigahertz range applications. IEEE Electron Device Lett. 2006, 27, 681–683.

16

Akinwande, D.; Close, G. E.; Wong, H. S. P. Analysis of the frequency response of carbon nanotube transistors. IEEE Trans. Nanotechnol. 2006, 5, 599–605.

17

Kocabas, C.; Kim, H. -s.; Banks, T.; Rogers, J. A.; Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 1405–1409.

18

Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.

19

Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.

20

Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540–4541.

21

Cassell, A. M.; Franklin, N. R.; Tombler, T. W.; Chan, E. M.; Han, J.; Dai, H. J. Directed growth of free-standing single-walled carbon nanotubes. J. Am. Chem. Soc. 1999, 121, 7975–7976.

22

Huang, S. M.; Maynor, B.; Cai, X. Y.; Liu, J. Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 2003, 15, 1651–1655.

23

Zhen. Y.; Li, S. D.; Burke, P. J. Synthesis of aligned arrays of millimeter long, straight single walled carbon nanotubes. Chem. Mater. 2004, 16, 3414–3416.

24

Li, S. D.; Zhen. Y.; Rutherglen, C.; Burke, P. J. Electrical properties of 0.4 cm long single walled carbon nanotubes. Nano Lett. 2004, 4, 2003–2007.

25

Iler, R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry; Wiley: New York, 1979.

26

Ago, H.; Imamoto, K.; Ishigami, N.; Ohdo, R.; Ikeda, K.; Tsuji, M. Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire. Appl. Phys. Lett. 2007, 90, 123112.

27

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

28

Ding, L.; Zhou, W. W.; Chu, H. B.; Zhong, L.; Zhang, Y.; Li, Y. Direct preparation and patterning of iron oxide nanoparticles via microcontact printing on silicon wafers for the growth of single-walled carbon nanotubes. Chem. Mater. 2006, 18, 4109–4114.

29

Li, Y. M.; Kim, W.; Zhang, Y. G.; Rolandi, M.; Wang, D. W.; Dai, H. J. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 2001, 105, 11424–11431.

30

Abrial, A.; Bouvier, J.; Renaudin, M.; Senn, P.; Vivet, P. A new contactless smart card IC using an on-chip antenna and an asynchronous microcontroller. IEEE J. Solid-State Circuits 2001, 36, 1101–1107.

31

An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 2002, 124, 13688–13689.

32

Li, Y.; Liu, J.; Wang, Y. Q.; Wang, Z. L. Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 2001, 13, 1008–1014.

33

Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.

Nano Research
Pages 158-165
Cite this article:
Zhou W, Rutherglen C, Burke PJ. Wafer Scale Synthesis of Dense Aligned Arrays of Single-Walled Carbon Nanotubes. Nano Research, 2008, 1(2): 158-165. https://doi.org/10.1007/s12274-008-8012-9

802

Views

38

Downloads

74

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 May 2008
Revised: 07 June 2008
Accepted: 07 June 2008
Published: 31 July 2008
© Tsinghua Press and Springer-Verlag 2008
Return