Journal Home > Volume 1 , Issue 1

The crystallographic structure of CdSe nanoparticles attached to carbon nanotubes has been elucidated by means of high resolution transmission electron microscopy and high angle annular dark field scanning transmission electron microscopy tomography. CdSe rod-like nanoparticles, grown in solution together with carbon nanotubes, undergo a morphological transformation and become attached to the carbon surface. Electron tomography reveals that the nanoparticles are hexagonal-based withthe (001) planes epitaxially matched to the outer graphene layer.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

3-D Characterization of CdSe Nanoparticles Attached to Carbon Nanotubes

Show Author's information Ana B. Hungría1( )Beatriz H. Juárez2( )Christian Klinke2Horst Weller2Paul A. Midgley1
Department of Materials Science and MetallurgyUniversity of CambridgePembroke StreetCambridgeCB2 3QZUK
Institute of Physical ChemistryUniversity of HamburgHamburg20146Germany

Abstract

The crystallographic structure of CdSe nanoparticles attached to carbon nanotubes has been elucidated by means of high resolution transmission electron microscopy and high angle annular dark field scanning transmission electron microscopy tomography. CdSe rod-like nanoparticles, grown in solution together with carbon nanotubes, undergo a morphological transformation and become attached to the carbon surface. Electron tomography reveals that the nanoparticles are hexagonal-based withthe (001) planes epitaxially matched to the outer graphene layer.

Keywords: carbon nanotubes, Electron tomography, CdSe nanoparticles, STEM, HRTEM

References(44)

1

Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phy. Chem. C 2007, 111(7): 2834–2860.

2

Sun, B. Q.; Marx, E.; Greenham, N. C. Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett. 2003, 3(7), 961–963.

3

Mcdonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4(2), 138–U114.

4

Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J. ZnO nanotube based dye-sensitized solar cells ZnO nanotube based dye-sensitized solar cells. Nano Lett. 2007, 7(8), 2183–2187.

5

Wang, P.; Abrusci, A.; Wong, H. M. P.; Svensson, M.; Andersson, M. R.; Greenham, N. C. Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. Nano Lett. 2006, 6(8), 1789–1793.

6

Plass, R.; Pelet, S.; Krueger, J.; Gratzel, M.; Bach, U. Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 2002, 106(31), 7578–7580.

7

Nozik, A. J. Quantum dot solar cells. Physica E: Low-Dimens. Syst. & Nanostruct. 2002, 14(1–2), 115–120.

8

Lee, H.; Yoon, S. W.; Kim, E. J.; Park, J. In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett. 2007, 7(3), 778–784.

9

Huynh, W. U.; Dittmer, J. J.; Alivisatos, A.P. Hybrid nanorod-polymer solar cells. Science 2002, 295(5564), 2425–2427.

10

Robel, I.; Bunker, B. A.; Kamat, P. V. Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Adv. Mater. 2005, 17(20), 2458.

11

Sheeney-Haj-Khia, L.; Basnar, B.; Willner, I. Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew. Chem. Int. Edit. 2005, 44, 78–83.

12

Micic, O. I.; Sprague, J. R.; Curtis, C. J.; Jones, K. M.; Machol, J. L.; Nozik, A. J.; Giessen, H.; Fluegel, B.; Mohs, G.; Peyghambarian, N. Synthesis and characterization of inp, gap, and gainp2 quantum dots. J. Phys. Chem. 1995, 99(19), 7754–7759.

13

Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F. X.; Zhang, J. Z.; Hyeon, T. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 2003, 125(36), 11100–11105.

14

Hines, M. A.; Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15(21), 1844–1849.

15

Yu, W. W.; Wang, Y. A.; Peng, X. G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 2003, 15(22), 4300-4308.

16

Peng, Z. A.; Peng, X.G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123(1), 183–184.

17

Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123(7), 1389–1395.

18

Talapin, D. V.; Koeppe, R.; Gotzinger, S.; Kornowski, A.; Lupton, J. M.; Rogach, A. L.; Benson, O.; Feldmann, J.; Weller, H. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 2003, 3(12), 1677–1681.

19

Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Edit. 2007, 46(25), 4630–4660.

20

Manna, L.; Wang, L. W.; Cingolani, R.; Alivisatos, A. P. First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: A model system for studying the anisotropic growth of CdSe nanocrystals. J. Phys. Chem. B 2005, 109(13), 6183–6192.

21

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404(6773), 59–61.

22

Peng, Z. A.; Peng, X. G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124(13), 3343–3353.

23

Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004, 304(5678), 1787–1790.

24

Casavola, M.; Grillo, V.; Carlino, E.; Giannini, C.; Gozzo, F.; Pinel, E. F.; Garcia, M. A.; Manna, L.; Cingolani, R.; Cozzoli, P. D. Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods. Nano Lett. 2007, 7(5), 1386–1395.

25

Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. W.; Alivisatos, A. P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430(6996), 190–195.

26

Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; Alivisatos, A. P. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 2007, 7(10), 2951–2959.

27

Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T.A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436(7047), 91–94.

28

Juarez, B. H.; Klinke, C.; Kornowski, A.; Weller, H. Quantum dot attachment and morphology control by carbon nanotubes. Nano Lett. 2007, 7(12), 3564–3568.

29

Ersen, O.; Werckmann, J.; Houlle, M.; Ledoux, M. J.; Pham-Huu, C. 3D electron microscopy study of metal particles inside multiwalled carbon nanotubes. Nano Lett. 2007, 7(7), 1898–1907.

30

Cha, J. J.; Weyland, M.; Briere, J. F.; Daykov, I. P.; Arias, T. A.; Muller, D. A. Three-dimensional imaging of carbon nanotubes deformed by metal islands. Nano Lett. 2007, 7(12), 3770–3773.

31

Kleber, W.; Bautsch, H. J.; Bohm, J. Einführung in die Kristallographie, 1998.

DOI
32

Jun, Y. W.; Casula, M. F.; Sim, J. H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc. 2003, 125(51), 15981–15985.

33

Nair, P. S.; Fritz, K. P.; Scholes, G. D. Evolutionary shape control during colloidal quantum-dot growth. Small 2007, 3(3), 481–487.

34

Ostwald, W. Z. Phys. Chem. 1900, 34, 495.

35

Perebeinos, V.; Tersoff, J.; Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 2004, 92(25), 257402–257405.

36

Stevenson, A. W.; Barnea Z. Acta Crystallog. B 1984, 40, 530.

DOI
37

Murray, C. B.; Norris, D. J.; Bawendi, M. G.; (1993). Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1980, 115(19), 8706–8715.

38

Midgley, P. A.; Weyland, M. 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96(3–4), 413–431.

39

Hernandez, J. C.; Hungria, A. B.; Perez-Omil, J. A.; Trasobares, S.; Bernal, S.; Midgley, P. A.; Alavi, A.; Calvino, J. J. Structural surface investigations of cerium-zirconium mixed oxide nanocrystals with enhanced reducibility. J. Phys. Chem. C 2007, 111(26), 9001–9004.

40

Manna, L.; Scher. E. C.; Alivisatos. A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.

41

Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124(9), 2049–2055.

42
Radermacher M, H. W. Proceedings of the 7th European Congr. Electron Microscopy, Den Haag, 1980.
43

Anderson, M. A.; Gorer, S.; Penner, R. M. A hybrid electrochemical/chemical synthesis of supported, luminescent cadmium sulfide nanocrystals. J. Phys. Chem. B 1997, 101(31), 5895–5899.

44

Bernal, S.; Botana, F. J.; Calvino, J. J.; Lopez-Cartes, C.; Perez-Omil, J. A.; Rodriguez Izquierdo, J. M. The interpretation of HREM images of supported metal catalysts using image simulation: Profile view images. Ultramicroscopy 1998, 72(3–4), 135–164.

File
nr-1-1-89_ESM.mpg (5 MB)
Publication history
Copyright
Rights and permissions

Publication history

Received: 18 April 2008
Revised: 28 May 2008
Accepted: 28 May 2008
Published: 12 July 2008
Issue date: January 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Rights and permissions

Return