Journal Home > Volume 1 , Issue 2

We have investigated the behavior of two nanotube systems, carbon and boron nitride, under controlled applied voltages in a high-resolution transmission electron microscope (TEM) equipped with a scanning tunneling microscope (STM) unit. Individual nanotubes (or thin bundles) were positioned between a piezo-movable gold electrode and a biased (up to ±140 V) STM tip inside the pole-piece of the microscope. The structures studied include double- and multi-walled carbon nanotubes (the latter having diverse morphologies due to the various synthetic procedures utilized), few-layered boron nitride nanotube bundles and multi-walled boron nitride nanotubes (with or without functionalized surfaces). The electrical breakdown, physical failure, and electrostatic interactions are documented for each system.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanotubes in a Gradient Electric Field as Revealed by STM–TEM Technique

Show Author's information Dmitri Golberg1,2( )Pedro M. F. J. Costa1,3( )Masanori Mitome1Yoshio Bando2
Nanoscale Materials Center amiki 1-1, Tsukuba, Ibaraki 305-0044 Japan
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science Namiki 1-1, Tsukuba, Ibaraki 305-0044 Japan
Center for Research in Ceramics and Composite Materials University of Aveiro 3810-193 Aveiro, Portugal

Abstract

We have investigated the behavior of two nanotube systems, carbon and boron nitride, under controlled applied voltages in a high-resolution transmission electron microscope (TEM) equipped with a scanning tunneling microscope (STM) unit. Individual nanotubes (or thin bundles) were positioned between a piezo-movable gold electrode and a biased (up to ±140 V) STM tip inside the pole-piece of the microscope. The structures studied include double- and multi-walled carbon nanotubes (the latter having diverse morphologies due to the various synthetic procedures utilized), few-layered boron nitride nanotube bundles and multi-walled boron nitride nanotubes (with or without functionalized surfaces). The electrical breakdown, physical failure, and electrostatic interactions are documented for each system.

Keywords: Carbon nanotubes, boron nitride nanotubes, transmission electron microscope, scanning tunneling microscope

References(29)

1

Gao, J.; Wang, Q.; Dai, H. J. Electron transport in very clean, as grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745–749.

2
Avouris, P. Electronics with carbon nanotubes. Phys. World 2007, 20, 40–45 (and references therein).https://doi.org/10.1088/2058-7058/20/3/32
DOI
3

Cumings, J.; Collins, P. G.; Zettl, A. Materials–peeling and sharpening multiwall nanotubes. Nature 2000, 406, 586.

4

Svensson, K.; Olin, H.; Olsson, E. Nanopipettes for metal transport. Phys. Rev. Lett. 2004, 93, 145901.

5

Cumings, J.; Zettl, A. Field emission and current-voltage properties of boron nitride nanotubes. Solid State Commun. 2004, 129, 661–664.

6

Huang, J. Y.; Chen, S.; Jo, S. H., Wang, Z, Han, D. X., Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. Phys. Rev. Lett. 2005, 94, 236802.

7

Wang, M. S.; Chen, Q.; Peng, L.-M. Grinding a nanotube. Adv. Mater. 2008, 20, 724–728.

8

Wei, X. L.; Chen, Q.; Liu, Y., Peng, L.-M. Cutting and sharpening carbon nanotubes using a carbon nanotube nanoknife. Nanotechnology 2007, 18, 185503.

9

Sawaya, S.; Akita, S.; Nakayama, Y. Correlation between the mechanical and electrical properties of carbon nanotubes. Nanotechnology 2007, 18, 035702.

10

Suekane, O.; Nagataki A.; Nakayama, Y. Current-induced curing of defective carbon nanotubes. Appl. Phys. Lett. 2006, 89, 183110.

11

Cumings, J.; Olsson, E.; Petford-Long, A. K.; Zhu, Y. M. Electric and magnetic phenomena studied by in situ transmission electron microscopy. MRS Bull. 2008, 33, 101–106.

12

Golberg, D.; Mitome, M.; Kurashima, K.; Zhi, C. Y.; Tang, C. C.; Bando, Y.; Lourie, O. In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope. Appl. Phys. Lett. 2006, 88, 123101.

13

Golberg, D.; Costa, P. M. F. J.; Mitome, M.; Mueller, Ch.; Hampel, S.; Leonhardt, A.; Bando, Y. Copper-filled carbon nanotubes: Rheostatlike behavior and femtogram copper mass transport. Adv. Mater. 2007, 19, 1937–1942.

14

Bai, X. D.; Golberg, D.; Bando, Y.; Zhi, C. Y.; Tang, C. C.; Mitome, M.; Kurashima, K.; Deformation-driven electrical transport of individual boron nitride nanotubes. Nano Lett. 2007, 7, 632–637.

15

Costa, P. M. F. J.; Golberg, D.; Mitome, M.; Bando, Y. Nitrogen-doped carbon nanotube structure tailoring and time-resolved transport measurements in a transmission electron microscope. Appl. Phys. Lett. 2007, 91, 223108.

16

Costa, P. M. F. J.; Golberg, D.; Mitome, M.; Bando, Y. Electrical properties of CNx nanotubes probed in a transmission electron microscope. Appl. Phys. A–Mater. 2008, 90, 225–229.

17

Kim, Y. A.; Muramatsu, H.; Hayashi, T.; Endo, M.; Terrones, M.; Dresselhaus, M. S. Fabrication of high-purity, double-walled carbon nanotube buckypaper. Chem. Vap. Depo. , 2006, 12, 327–332.

18

Ando, Y.; Iijima, S. Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys. 1993, 32, L107–L109.

19

Melechko, A. V.; Merkulov, V. I.; McKnight, T. E., Guillorn, M. A.; Klein, K. L.; Lowndes, D. H., Simpson, M. L. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and direct assembly. J. Appl. Phys. 2005, 97, 041301.

20

Golberg, D.; Bando, Y.; Kurashima, K.; Sato, T. Ropes of BN multi-walled nanotubes. Solid State Commun. 2000, 116, 1–6.

21

Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg D. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 2005, 135, 67–70.

22

Zhi, Y. C.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg D. Grafting boron nitrides: From polymers to amorphous and graphitic carbon. J. Phys. Chem. C 2007, 111, 1230–1233.

23

Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, Ph. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128–3131.

24

Ding, F.; Jiao, K., Lin, Y.; Yakobson, B. I. How evaporating carbon nanotubes retain their perfection. Nano Lett. 2007, 7, 681–684.

25

Collins, P. G.; Avouris, P. Multishell conduction in multiwalled carbon nanotubes. Appl. Phys. A–Mater. 2002, 74, 329–332.

26

Bonard, J.-M.; Klinke, C.; Dean, K.A.; Coll, B.F. Degradation and failure of carbon nanotube emitters. Phys. Rev. B 2003, 67, 115406.

27

Wei, W.; Liu, Y., Wei, Y.; Jiang, K.; Peng, L.-M.; Fan, S. Tip cooling effect and failure mechanism of field-emitting carbon nanotubes. Nano Lett. 2007, 7, 64–68.

28

Suzuki, M.; Ominami, Y.; Ngo, Q.; Yang, C. Y. Current-induced breakdown of carbon nanofibers. J. Appl. Phys. 2007, 101, 114307.

29

Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes. Adv. Mater. 2007, 19, 2413–2432.

File
nr-1-2-166_ESM1.pdf (178.6 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 April 2008
Revised: 04 June 2008
Accepted: 04 June 2008
Published: 31 July 2008
Issue date: February 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

The authors are indebted to Drs. M. Endo, Y. Ando, and K. Klein for providing double-walled, multiwalled, and disordered carbon nanostructures, respectively, and to Dr C. Y. Zhi for preparing the functionalized boron nitride samples employed in this study. The technical support of Mr. K. Kurashima and Dr. O. Lourie is also appreciated. This work was financially supported by the Nanoscale Materials Center Project, and, in part, by the World Premier International Center for Materials Nanoarchitectonics (MANA) Project, both tenable at the National Institute for Materials Science (NIMS).

Rights and permissions

Return