Journal Home > Volume 1 , Issue 1

The mechanical properties of individual WS2 nanotubes were investigated and directly related to their atomic structure details by in situ transmission electron microscope measurements. A brittle mode deformation was observed in bending tests of short (ca. 1 μm in length) multilayer nanotubes. This mode can be related to the atomic structure of their shells. In addition, longer nanotubes (6–7μm in length) were deformed in situ scanning electron microscope, but no plastic deformation was detected. A "sword-in-sheath" fracture mechanism was revealed in tensile loading of a nanotube, and the sliding of inner shells inside the outermost shell was imaged "on-line". Furthermore, bending modulus of 217 GPa was obtained from measurements of the electric-field-induced resonance of these nanotubes.


menu
Abstract
Full text
Outline
About this article

In Situ TEM Measurements of the Mechanical Properties and Behavior of WS2 Nanotubes

Show Author's information Ming Sheng Wang1Ifat Kaplan-Ashiri2Xian Long Wei1Rita Rosentsveig2Hanoch Daniel Wagner2Reshef Tenne2( )Lian Mao Peng1
Key Laboratory on the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijing100871China
Department of Materials and InterfacesWeizmann Institute of ScienceRehovot76100Israel

Abstract

The mechanical properties of individual WS2 nanotubes were investigated and directly related to their atomic structure details by in situ transmission electron microscope measurements. A brittle mode deformation was observed in bending tests of short (ca. 1 μm in length) multilayer nanotubes. This mode can be related to the atomic structure of their shells. In addition, longer nanotubes (6–7μm in length) were deformed in situ scanning electron microscope, but no plastic deformation was detected. A "sword-in-sheath" fracture mechanism was revealed in tensile loading of a nanotube, and the sliding of inner shells inside the outermost shell was imaged "on-line". Furthermore, bending modulus of 217 GPa was obtained from measurements of the electric-field-induced resonance of these nanotubes.

Keywords: TEM, Inorganic nanotubes, nanomechanics, SEM

References(36)

1

Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381 (6584), 678–680.

2

Lourie, O.; Cox, D. M.; Wagner, H. D. Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 1998, 81 (8), 1638–1641.

3

Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mat. Sci. Eng. a-Struct. 2002, 334 (1–2), 173–178.

4

Troiani, H. E.; Miki-Yoshida, M.; Camacho-Bragado, G. A.; Marques, M. A. L.; Rubio, A.; Ascencio, J. A.; Jose-Yacaman, M. Direct observation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level. Nano Lett. 2003, 3 (6), 751–755.

5

Huang, J. Y.; Chen, S.; Ren, Z. F.; Wang, Z. Q.; Wang, D. Z.; Vaziri, M.; Suo, Z.; Chen, G.; Dresselhaus, M. S. Kink formation and motion in carbon nanotubes at high temperatures. Phys. Rev. Lett. 2006, 97 (7), 075501.

6

Huang, J. Y.; Chen, S.; Wang, Z. Q.; Kempa, K.; Wang, Y. M.; Jo, S. H.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Superplastic carbon nanotubes—Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes. Nature 2006, 439 (7074), 281–281.

7

Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulfide. Nature 1992, 360 (6403), 444–446.

8

Rapoport, L.; Fleischer, N.; Tenne, R. Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 2005, 15 (18), 1782–1788.

9

Kaplan-Ashiri, I.; Cohen, S. R.; Gartsman, K.; Rosentsveig, R.; Seifert, G.; Tenne, R. Mechanical behavior of individual WS2 nanotubes. J. Mater. Res. 2004, 19 (2), 454–459.

10

Kaplan-Ashiri, I.; Cohen, S. R.; Gartsman, K.; Ivanovskaya, V.; Heine, T.; Seifert, G.; Wiesel, I.; Wagner, H. D.; Tenne, R. On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (3), 523–528.

11

Kaplan-Ashiri, I.; Cohen, S. R.; Apter, N.; Wang, Y. K.; Seifert, G.; Wagner, H. D.; Tenne, R. Microscopic investigation of shear in multiwalled nanotube deformation. J. Phys. Chem. C 2007, 111 (24), 8432–8436.

12

Zhu, Y. Q.; Sekine, T.; Li, Y. H.; Fay, M. W.; Zhao, Y. M.; Poa, C. H. P.; Wang, W. X.; Roe, M. J.; Brown, P. D.; Fleischer, N.; Tenne, R. Shock-absorbing and failure mechanisms of WS2 and MoS2 nanoparticles with fullerene-like structures under shock wave pressure. J. Am. Chem. Soc. 2005, 127 (46), 16263–16272.

13

Wang, M. S.; Peng, L. M.; Wang, J. Y.; Chen, Q. Shaping carbon nanotubes and the effects on their electrical and mechanical properties. Adv. Funct. Mater. 2006, 16 (11), 1462–1468.

14

Wang, M. S.; Wang, J. Y.; Chen, Q.; Peng, L. M. Fabrication and electrical and mechanical properties of carbon nanotube interconnections. Adv. Funct. Mater. 2005, 15 (11), 1825–1831.

15

Gao, R. P.; Wang, Z. L.; Bai, Z. G.; de Heer, W. A.; Dai, L. M.; Gao, M. Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 2000, 85 (3), 622–625.

16

Poncharal, P.; Wang, Z. L.; Ugarte, D.; de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283 (5407), 1513–1516.

17

Yu, M. F.; Wagner, G. J.; Ruoff, R. S.; Dyer, M. J. Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope. Phys. Rev. B 2002, 66 (7), 073406.

18

Gaillard, J.; Skove, M.; Rao, A. M. Mechanical properties of chemical vapor deposition-grown multiwalled carbon nanotubes. Appl. Phys. Lett. 2005, 86 (23), 233109.

19

Liu, K. H.; Wang, W. L.; Xu, Z.; Liao, L.; Bai, X. D.; Wang, E. G. In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope. Appl. Phys. Lett. 2006, 89 (22), 221908

20

Gere, J. M. Mechanics of Materials, 6th ed.; Brooks/Cole Publishing: Pacifie Grove, 2004; p. 940.

21

Yakobson, B. I.; Avouris, P. Mechanical properties of carbon nanotubes. Carbon Nanotubes—Topics in Applied Physics 2001, 80, 287–327.

22

Arroyo, M.; Belytschko, T. Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91 (21), 215505.

23

Falvo, M. R.; Clary, G. J.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389 (6651), 582–584.

24

Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 1996, 104 (5), 2089–2092.

25

Liu, J. Z.; Zheng, Q. S.; Jiang, Q. Effect of bending instabilities on the measurements of mechanical properties of multiwalled carbon nanotubes. Phys. Rev. B 2003, 67 (7), 075414.

26

Golberg, D.; Costa, P. M. F. J.; Lourie, O.; Mitome, M.; Bai, X. D.; Kurashima, K.; Zhi, C. Y.; Tang, C. C.; Bando, Y. Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett. 2007, 7 (7), 2146–2151.

27

Kuzumaki, T.; Kitakata, S.; Enomoto, K.; Yasuhara, T.; Ohtake, N.; Mitsuda, Y. Dynamic observation of the bending behavior of carbon nanotubes by nanoprobe manipulation in TEM. Carbon 2004, 42 (11), 2343–2345.

28

Ding, W.; Calabri, L.; Kohlhaas, K. M.; Chen, X.; Dikin, D. A.; Ruoff, R. S. Modulus, fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes. Exp. Mech. 2007, 47 (1), 25–36.

29

Kuzumaki, T.; Hayashi, T.; Ichinose, H.; Miyazawa, K.; Ito, K.; Ishida, Y. In situ observed deformation of carbon nanotubes. Philos. Mag. 1998, 77 (6), 1461–1469.

30

Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: Cleveland, Ohio, 1977.

31

Joly-Pottuz, L.; Martin, J. M.; Dassenoy, F.; Belin, M.; Montagnac, G.; Reynard, B.; Fleischer, N. Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 2006, 99 (2), 023524/1–023524/5.

32

Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84 (24), 5552–5555.

33

Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287 (5453), 637–640.

34

Yu, M. F.; Yakobson, B. I.; Ruoff, R. S. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. J. Phys. Chem. B 2000, 104 (37), 8764–8767.

35

Gibson, R. F.; Ayorinde, E. O.; Wen, Y. F. Vibrations of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2007, 67 (1), 1–28.

36

Kaplan-Ashiri, I.; Tenne, R. Mechanical Properties of WS2 Nanotubes J. Clust. Sci. 2007, 18 (3), 549–563.

Publication history
Copyright
Rights and permissions

Publication history

Received: 28 April 2008
Revised: 25 May 2008
Accepted: 25 May 2008
Published: 12 July 2008
Issue date: January 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Rights and permissions

Return