Journal Home > Volume 1 , Issue 1

This article reviews our recent progress on ultra-high density nanowires (NWs) array-based electronics. The superlattice nanowire pattern transfer (SNAP) method is utilized to produce aligned, ultra-high density Si NW arrays. We first cover processing and materials issues related to achieving bulk-like conductivity characteristics from 10–20 nm wide Si NWs. We then discuss Si NW-based field-effect transistors (FETs). These NWs & NW FETs provide terrific building blocks for various electronic circuits with applications to memory, energy conversion, fundamental physics, logic, and others. We focus our discussion on complementary symmetry NW logic circuitry, since that provides the most demanding metrics for guiding nanofabrication. Issues such as controlling the density and spatial distribution of both p- and n-type dopants within NW arrays are discussed, as are general methods for achieving Ohmic contacts to both p- and n-type NWs. These various materials and nanofabrication advances are brought together to demonstrate energy efficient, complementary symmetry NW logic circuits.


menu
Abstract
Full text
Outline
About this article

Development of Ultra-High Density Silicon Nanowire Arrays for Electronics Applications

Show Author's information Dunwei Wang1( )Bonnie A. Sheriff2Michael McAlpine2James R. Heath2
Department of ChemistryBoston College140 Commonwealth AveChestnut HillMA 02467USA
Division of Chemistry and Chemical Engineering and the Kavli Nanoscience CenterCaltech127-72PasadenaCA 91125USA

Abstract

This article reviews our recent progress on ultra-high density nanowires (NWs) array-based electronics. The superlattice nanowire pattern transfer (SNAP) method is utilized to produce aligned, ultra-high density Si NW arrays. We first cover processing and materials issues related to achieving bulk-like conductivity characteristics from 10–20 nm wide Si NWs. We then discuss Si NW-based field-effect transistors (FETs). These NWs & NW FETs provide terrific building blocks for various electronic circuits with applications to memory, energy conversion, fundamental physics, logic, and others. We focus our discussion on complementary symmetry NW logic circuitry, since that provides the most demanding metrics for guiding nanofabrication. Issues such as controlling the density and spatial distribution of both p- and n-type dopants within NW arrays are discussed, as are general methods for achieving Ohmic contacts to both p- and n-type NWs. These various materials and nanofabrication advances are brought together to demonstrate energy efficient, complementary symmetry NW logic circuits.

Keywords: logic circuit, Ultra-high density nanowire, superlattice nanowire pattern transfer

References(56)

1

Lieber, C. M. Nanoscale science and technology: building a big future from small things. MRS Bull. 2003, 28, 486–491.

2

Xia, Y. N.; Yang, P. D. Chemistry and physics of nanowires. Adv. Mater. 2003, 15, 351.

3

Yang, P. D. The chemistry and physics of semiconductor nanowires. MRS Bull. 2005, 30, 85–91.

4
The international technology roadmap for semiconductors(ITRS): process integration, devices, and structures(Semiconductor Industry Association, San Jose, California, 2005). < http://www.itrs.net/reports.html>
5

Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics—A route to nanoscale optical devices. Adv. Mater. 2001, 13, 1501.

DOI
6

Brus, L. Electronic wave-functions in semiconductor clusters—Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560.

7

Caruso, F. Nanoengineering of particle surfaces. Adv. Mater. 2001, 13, 11.

DOI
8

Wang, D. W.; Chang, Y. L.; Wang, Q.; Cao, J.; Farmer, D. B.; Gordon, R.G.; Dai, H. J. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc. 2004, 126, 11602–11611.

9

Bunimovich, Y. L.; Shin, Y. S.; Yeo, W. S.; Amori, M.; Kwong, G.; Heath, J. R. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 2006, 128, 16323–16331.

10

Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486–491.

11

Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57–61.

12

Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

13

Wang, D.; Qian, F.; Yang, C.; Zhong, Z. H.; Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 2004, 4, 871–874.

14

Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

15

Jin, S.; Whang, D. M.; Mcalpine, M. C.; Friedman, R. S.; Wu, Y.; Lieber, C. M. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 2004, 4, 915–919.

16

Wang, D. W.; Chang, Y. L.; Liu, Z.; Dai, H. J. Oxidation resistant germanium nanowires: Bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly. J. Am. Chem. Soc. 2005, 127, 11871–11875.

17

Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777.

18

Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. -K.; Goddard III, W.A.; Heath, J.R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171.

19

Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

DOI
20

Wang, D. W.; Sheriff, B. A.; Heath, J. R. Silicon p-FETs from ultrahigh density nanowire arrays. Nano Lett. 2006, 6, 1096–1100.

21

Wang, D. W.; Sheriff, B. A.; Heath, J. R. Complementary symmetry silicon nanowire logic: Power-efficient inverters with gain. Small 2006, 2, 1153–1158.

22

Liu, B. Z.; Wang, Y. F.; Dilts, S.; Mayer, T. S.; Mohney, S. E. Silicidation of silicon nanowires by platinum. Nano Lett. 2007, 7, 818–824.

23

Wang, D. W.; Sheriff, B. A.; Heath, J. R.; Kurtin, J. N. Complementary symmetry nanowire logic circuits: Experimental demonstrations and in silico optimizations. ACS Nano 2008, revised, acceptance pending.

24

Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112–115.

25

Beckman, R. A.; Johnston-Halperin, E.; Melosh, N. A.; Luo, Y.; Green, J. E.; Heath, J. R. Fabrication of conducting Si nanowire arrays. J. Appl. Phys. 2004, 96, 5921–5923.

26

Yu, H. B.; Webb, L. J.; Ries, R. S.; Solares, S. D.; Goddard, W. A.; Heath, J. R.; Lewis, N. S. Low-temperature STM images of methyl-terminated Si (111) surfaces. J. Phys. Chem. B 2005, 109, 671–674.

27

Solares, S. D.; Yu, H. B.; Webb, L. J.; Lewis, N. S.; Heath, J. R.; Goddard, W. A. Chlorination-methylation of the hydrogen-terminated silicon (111) surface can induce a stacking fault in the presence of etch pits. J. Am. Chem. Soc. 2006, 128, 3850–3851.

28

Green, J. E.; Wong, S. J.; Heath, J. R. Hall mobility measurements and chemical stability of ultrathin, methylated Si (111)-on-insulator films. J. Phy. Chem. C 2008, 112, 5185–5189.

29

Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.

30

Mcalpine, M. C.; Friedman, R. S.; Jin, S.; Lin, K. H.; Wang, W. U.; Lieber, C. M. High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 2003, 3, 1531–1535.

31

Menard, E.; Nuzzo, R. G.; Rogers, J. A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl. Phys. Lett. 2005, 86, 093507.

32

Zhu, Z. T.; Menard, E.; Hurley, K.; Nuzzo, R. G.; Rogers, J. A. Spin on dopants for high-performance single-crystal silicon transistors on flexible plastic substrates. Appl. Phys. Lett. 2005, 86, 133507.

33

Sze, S. M. Physics of Semiconductor Devices; Wiley: New York, 1981.

34

Wolf, S.; Tauber, R. N. Silicon Processing for the VLSI Era, 2nd ed.; Lattice Press: Sunset Beach, CA, 2000.

35

Beckman, R.; Johnston-Halperin, E.; Luo, Y.; Green, J. E.; Heath, J. R. Bridging dimensions: Demultiplexing ultrahigh-density nanowire circuits. Science 2005, 310, 465–468.

36

Javey, A.; Guo, J.; Paulsson, M.; Wang, Q.; Mann, D. Lundstrom, M.; Dai, H. J. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 2004, 92.

37

Koo, S. M.; Li, Q.; Monica, D. E.; Richter, C. A.; Vogel, E. M. Enhanced channel modulation in dual-gated silicon nanowire transistors. Nano Lett. 2005, 5, 2519–2523.

38

Mcalpine, M. C.; Ahmad, H.; Wang, D.; Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 2007, 6, 379–384.

39

Mcalpine, M. C.; Friedman, R. S.; Lieber, C. M. High-performance nanowire electronics and photonics and nanoscale patterning on flexible plastic substrates. Proc. IEEE 2005, 93, 1357–1363.

40

Rabaey, J. M.; Chandrakasan, A.; Nikolic, B. Digital Integrated Circuits: A Design Perspective, 2nd ed.; Pearson Education, Inc. : Upper Saddle River, NJ, 2003.

41

Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.

42

Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.

43

Chen, Z. H.; Appenzeller, J.; Lin, Y. M.; Sippel-Oakley, J.; Rinzler, A. G.; Tang, J. Y.; Wind, S. J.; Solomon, P. M.; Avouris, P. An integrated logic circuit assembled on a single carbon nanotube. Science 2006, 311, 1735.

44

Javey, A.; Wang, Q.; Ural, A.; Li, Y. M.; Dai, H. J. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.

45

Chen, Y.; Jung, G. Y.; Ohlberg, D. A. A.; Li, X. M.; Stewart, D. R.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.; Williams, R. S. Nanoscale molecular-switch crossbar circuits. Nanotechnology 2003, 14, 462–468.

46

Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, J.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE T. Nanotechnol. 2005, 4, 153–158.

47

Zheng, G. F.; Lu, W.; Jin, S.; Lieber, C. M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 2004, 16, 1890–1893.

48

Wang, D. W.; Chang, Y. L.; Wang, Q.; Cao, J.; Farmer, D. B.; Gordon, R. G.; Dai, H. J. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc. 2004, 126, 11602–11611.

49

Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

50

Kingston, R. H. Semiconductor Surface Physics University of Pennsylvania Press: Philadelphia, 1957.

DOI
51

Xu, K.; Heath, J. R. Controlled fabrication and electrical properties of long quasi-one-dimensional superconducting nanowire arrays. Nano Lett. 2008, 8, 136–141.

52

Xu, K.; Heath, J. R. submitted, 2008.

53

Bindal, A.; Hamedi-Hagh, S. The impact of silicon nano-wire technology on the design of single-work-function CMOS transistors and circuits. Nanotechnology 2006, 17, 4340–4351.

54

Green, J. E.; Wook Choi, J.; Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; Deionno, E.; Luo, Y.; Sheriff, B.A.; Xu, K.; Shik Shin, Y.; Tseng, H. -R.; Stoddart, J. F.; Heath, J. R. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 2007, 445, 414–417.

55

Horowitz, P.; Hill, W. The Art of Electronics. Cambridge: Cambridge University Press, 1989.

56

Wang, D. W.; Wang, Q.; Javey, A.; Tu, R.; Dai, H. J.; Kim, H.; Mcintyre, P. C.; Krishnamohan, T.; Saraswat, K. C. Germanium nanowire field-effect transistors with SiO2 and high-kappa HfO2 gate dielectrics. Appl. Phys. Lett. 2003, 83, 2432–2434.

Publication history
Copyright
Rights and permissions

Publication history

Received: 28 April 2008
Revised: 17 May 2008
Accepted: 18 May 2008
Published: 12 July 2008
Issue date: January 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Rights and permissions

Return