Journal Home > Volume 1 , Issue 1

The size of the gold particles is a very important parameter to get active catalysts. This paper reports a novel colloidal deposition method to prepare Au/LaVO4 nanocomposite catalyst with monodispersed Au colloids and uniform LaVO4 nanoplates in nonpolar solvent. Monodispersed Au colloids with tunable size (such as 2, 5, 7, 11, 13, and 16 nm) and LaVO4 nanocrystals with well-defined shapes were pre-synthesized assisted with oleic acid/amine. During the following immobilization process, the particle size and shape of Au and LaVO4 were nearly preserved. As-prepared Au/LaVO4 nanocomposite showed high catalytic activity for CO oxidation at room temperature. Since sizes of gold particles were well-defined before the immobilization process, size effect of gold particles was easy to be investigated and the results show that 5-nm Au/LaVO4 nanocomposite has the highest activity for CO oxidation. This synthetic method can be extended further for the preparation of other composite nanomaterials.


menu
Abstract
Full text
Outline
About this article

Au/LaVO4 Nanocomposite: Preparation, Characterization, and Catalytic Activity for CO Oxidation

Show Author's information Junfeng Liu1Wei Chen1Xiangwen Liu2Kebin Zhou2Yadong Li1( )
Department of ChemistryTsinghua UniversityBeijing100084China
College of Chemistry and Chemical EngineeringGraduate University of the Chinese Academy of SciencesBeijing100049China

Abstract

The size of the gold particles is a very important parameter to get active catalysts. This paper reports a novel colloidal deposition method to prepare Au/LaVO4 nanocomposite catalyst with monodispersed Au colloids and uniform LaVO4 nanoplates in nonpolar solvent. Monodispersed Au colloids with tunable size (such as 2, 5, 7, 11, 13, and 16 nm) and LaVO4 nanocrystals with well-defined shapes were pre-synthesized assisted with oleic acid/amine. During the following immobilization process, the particle size and shape of Au and LaVO4 were nearly preserved. As-prepared Au/LaVO4 nanocomposite showed high catalytic activity for CO oxidation at room temperature. Since sizes of gold particles were well-defined before the immobilization process, size effect of gold particles was easy to be investigated and the results show that 5-nm Au/LaVO4 nanocomposite has the highest activity for CO oxidation. This synthetic method can be extended further for the preparation of other composite nanomaterials.

Keywords: catalytic activity, nanocomposite, Au/LaVO4, colloidal deposition

References(36)

1

Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.

2

Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

3

Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170.

4

Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252–255.

5

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.

6

Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

7

Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem. -Int. Edit. 2006, 45, 7896–7936.

8

Kung, H. H.; Kung, M. C.; Costello, C. K. Supported Au catalysts for low temperature CO oxidation. J. Catal. 2003, 216, 425–432.

9

Lee, S. J.; Gavriilidis, A. Supported Au catalysts for low-temperature CO oxidation prepared by impregnation. J. Catal. 2002, 206, 305–313.

10

Wolf, A.; Schuth, F. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl. Catal. A-Gen. 2002, 226, 1–13.

11

Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212.

12

Schlogl, R.; Abd Hamid, S. B. Nanocatalysis: Mature science revisited or something really new? Angew. Chem. -Int. Edit. 2004, 43, 1628–1637.

13

Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. Benzylation of aromatic compounds with different crystallites of MgO. J. Am. Chem. Soc. 2003, 125, 2020–2021.

14

Chrzanowski, W.; Wieckowski, A. Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis. Langmuir 1998, 14, 1967–1970.

15

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

16

Zhang, Y.; Jia, H. B.; Yu, D. P.; Luo, X. H.; Zhang, Z. S.; Chen, X. H.; Lee, C. Shape-controllable synthesis of indium oxide structures: Nanopyramids and nanorods. J. Mater. Res. 2003, 18, 2793–2798.

17

Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. D. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. -Int. Edit. 2006, 45, 7824–7828.

18

Fang, Z. M.; Hong, Q.; Zhou, Z. H.; Dai, S. J.; Weng, W. Z.; Wan, H. L. Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catal. Lett. 1999, 61, 39–44.

19

Martinez-Huerta, M. V.; Coronado, J. M.; Fernandez-Garcia, M.; Iglesias-Juez, A.; Deo, G.; Fierro, J. L. G.; Banares, M. A. Nature of the vanadia-ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. J. Catal. 2004, 225, 240–248.

20

Liu, J. F.; Li, Y. D. Synthesis and self-assembly of luminescent Ln(3+)-doped LaVO4 uniform nanocrystals. Adv. Mater. 2007, 19, 1118–1122.

21

Liu, J. F.; Li, Y. D. General synthesis of colloidal rare earth orthovanadate nanocrystals. J. Mater. Chem. 2007, 17, 1797–1803.

22

Ge, J. P.; Chen, W.; Liu, L. P.; Li, Y. D. Formation of disperse nanoparticles at the oil/water interface in normal microemulsions. Chem. -Eur. J. 2006, 12, 6552–6558.

23

Tsubota, S.; Nakamura, T.; Tanaka, K.; Haruta, M. Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2 powder for CO oxidation. Catal. Lett. 1998, 56, 131–135.

24

Grunwaldt, J. D.; Kiener, C.; Wogerbauer, C.; Baiker, A. Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids. J. Catal. 1999, 181, 223–232.

25

Comotti, M.; Li, W. C.; Spliethoff, B.; Schuth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924.

26

Li, J.; Zeng, H. C. Preparation of monodisperse Au/TiO2 nanocatalysts via self-assembly. Chem. Mater. 2006, 18, 4270–4277.

27

Hickey, N.; Larochette, P. A.; Gentilini, C.; Sordelli, L.; Olivi, L.; Polizzi, S.; Montini, T.; Fornasiero, P.; Pasquato, L.; Graziani, M. Monolayer protected gold nanoparticles on ceria for an efficient CO oxidation catalyst. Chem. Mat. 2007, 19, 650–651.

28

Zheng, N. F.; Stucky, G. D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc. 2006, 128, 14278–14280.

29

Schmid, G.; Corain, B. Nanoparticulated gold: Syntheses, structures, electronics, and reactivities. Eur. J. Inorg. Chem. 2003, 3081–3098.

30

Hussain, I.; Graham, S.; Wang, Z. X.; Tan, B.; Sherrington, D. C.; Rannard, S. P.; Cooper, A. I.; Brust, M. Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. J. Am. Chem. Soc. 2005, 127, 16398–16399.

31

Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M. Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. J. Phys. Chem. B 2003, 107, 2719–2724.

32

Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 1997, 101, 3706–3712.

33

Bera, P.; Hegde, M. S. Characterization and catalytic properties of combustion synthesized Au/CeO2 catalyst. Catal. Lett. 2002, 79, 75–81.

34

Glaspell, G.; Hassan, H. M. A.; Elzatahry, A.; Fuoco, L.; Radwan, N. R. E.; El-Shall, M. S. Nanocatalysis on tailored shape supports: Au and Pd nanoparticles supported on MgO nanocubes and ZnO nanobelts. J. Phys. Chem. B 2006, 110, 21387–21393.

35

Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.

36

Zhu, H. G.; Ma, Z.; Clark, J. C.; Pan, Z. W.; Overbury, S. H.; Dai, S. Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor. Appl. Catal. A-Gen. 2007, 326, 89–99.

Publication history
Copyright
Rights and permissions

Publication history

Received: 14 April 2008
Revised: 08 May 2008
Accepted: 09 May 2008
Published: 12 July 2008
Issue date: January 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Rights and permissions

Return