AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Regular Paper

New Proper Reparameterization of Plane Rational Bézier Curves

School of Computer, Hangzhou Dianzi University, Hangzhou 310018, China
Haihe Laboratory of Information Technology Application Innovation, Tianjin 300480, China
School of Software, Tsinghua University, Beijing 100084, China
Show Author Information

Abstract

Coincidence detection of two curves or two surfaces has wide application in computer-aided design (CAD) and computer-aided geometric design (CAGD). Proper reparameterization is the most complicated part in the detection. This paper presents and proves the efficient and necessary coincidence condition for two rational Bézier curves in a new way. It also proposes an effective and efficient proper reparameterization method, Algorithm 1, for detecting a rational Bézier curve which can be degenerated into a new one of a lower degree. A numerical proper reparameterization method, Algorithm 2, and examples are also presented. Algorithm 1 is up to ten times faster than other prevailing methods, and Algorithm 2 is twice as fast and half as close as other prevailing methods. New CAD systems using Algorithm 1 and Algorithm 2 will hold accuracy and little computation time.

Electronic Supplementary Material

Download File(s)
JCST-2201-12188-Highlights.pdf (183.6 KB)

References

[1]
Mortenson M E. Geometric Modeling. Wiley, 1985.
[2]

Sederberg T W, Meyers R J. Loop detection in surface patch intersections. Computer Aided Geometric Design, 1988, 5(2): 161–171. DOI: 10.1016/0167-8396(88)90029-5.

[3]

Sederberg T W, Nishita T. Curve intersection using Bézier clipping. Computer-Aided Design, 1990, 22(9): 538–549. DOI: 10.1016/0010-4485(90)90039-F.

[4]

Hu C Y, Maekawa T, Patrikalakis N M, Ye X. Robust interval algorithm for surface intersections. Computer-Aided Design, 1997, 29(9): 617–627. DOI: 10.1016/S0010-4485(96)00099-1.

[5]

Mørken K, Reimers M, Schulz C. Computing intersections of planar spline curves using knot insertion. Computer Aided Geometric Design, 2009, 26(3): 351–366. DOI: 10.1016/j.cagd.2008.07.005.

[6]

Schulz C. Bézier clipping is quadratically convergent. Computer Aided Geometric Design, 2009, 26(1): 61–74. DOI: 10.1016/j.cagd.2007.12.006.

[7]

Wang W K, Zhang H, Liu X M, Paul J C. Conditions for coincidence of two cubic Bézier curves. Journal of Computational and Applied Mathematics, 2011, 235(17): 5198–5202. DOI: 10.1016/j.cam.2011.05.006.

[8]

Garcia C B, Li T Y. On the number of solutions to polynomial systems of equations. SIAM Journal on Numerical Analysis, 1980, 17(4): 540–546. DOI: 10.1137/0717046.

[9]

Chen X D, Ma W, Deng C. Conditions for the coincidence of two quartic Bézier curves. Applied Mathematics and Computation, 2013, 225: 731–736. DOI: 10.1016/j.amc.2013.09.053.

[10]

Sánchez-Reyes J. The conditions for the coincidence or overlapping of two Bézier curves. Applied Mathematics and Computation, 2014, 248: 625–630. DOI: 10.1016/j.amc.2014.10.008.

[11]

Berry T G, Patterson R R. The uniqueness of Bézier control points. Computer Aided Geometric Design, 1997, 14(9): 877–879. DOI: 10.1016/S0167-8396(97)00016-2.

[12]

Chen X D, Yang C, Ma W. Coincidence condition of two Bézier curves of an arbitrary degree. Computers & Graphics, 2016, 54: 121–126. DOI: 10.1016/j.cag.2015.07.013.

[13]

Chen X D, Duan X H, Yang C, Wang Y G. The study of coincidence or partial coincidence condition for two rational cubic Bézier curves. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(9): 1648–1652. DOI: 10.3969/j.issn.1003-9775.2015.09.007. (in Chinese)

[14]

Wang W K, Li S K. Algorithm for coincident judgment of two cubic B-spline curves. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(5): 674–678. DOI: 10.3969/j.issn.1003-9775.2013.05.011. (in Chinese)

[15]
Vlachkova K. Comparing Bézier curves and surfaces for coincidence. In Proc. the 10th Annual Meeting of the Bulgarian Section of SIAM, Dec. 2015, pp.239–250. DOI: 10.1007/978-3-319-49544-6_20.
[16]

Sederberg T W. Improperly parametrized rational curves. Computer Aided Geometric Design, 1986, 3(1): 67–75. DOI: 10.1016/0167-8396(86)90025-7.

[17]

Pérez-Díaz S. On the problem of proper reparametrization for rational curves and surfaces. Computer Aided Geometric Design, 2006, 23(4): 307–323. DOI: 10.1016/j.cagd.2006.01.001.

[18]

Shen L Y, Pérez-Díaz S. Numerical proper reparametrization of parametric plane curves. Journal of Computational and Applied Mathematics, 2015, 277: 138–161. DOI: 10.1016/j.cam.2014.09.012.

[19]

Shen L Y, Pérez-Díaz S, Yang Z. Numerical proper reparametrization of space curves and surfaces. Computer-Aided Design, 2019, 116: 102732. DOI: 10.1016/j.cad.2019.07.001.

[20]

Pérez-Díaz S, Shen L Y. Inversion, degree, reparametrization and implicitization of improperly parametrized planar curves using μ-basis. Computer Aided Geometric Design, 2021, 84: 101957. DOI: 10.1016/j.cagd.2021.101957.

[21]

Gutierrez J, Rubio R, Sevilla D. On multivariate rational function decomposition. Journal of Symbolic Computation, 2002, 33(5): 545–562. DOI: 10.1006/jsco.2000.0529.

[22]
Piegl L, Tiller W. The NURBS Book (2nd edition). Springer, 1997.
[23]

Corless R M, Watt S M, Zhi L. QR factoring to compute the GCD of univariate approximate polynomials. IEEE Trans. Signal Processing, 2004, 52(12): 3394–3402. DOI: 10.1109/TSP.2004.837413.

[24]

Chen X D, Ma W, Paul J C. Multi-degree reduction of Bézier curves using reparameterization. Computer-Aided Design, 2011, 43(2): 161–169. DOI: 10.1016/j.cad.2010.11.001.

Journal of Computer Science and Technology
Pages 1193-1206

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Wang Z-F, Chen X-D, Yong J-H. New Proper Reparameterization of Plane Rational Bézier Curves. Journal of Computer Science and Technology, 2024, 39(5): 1193-1206. https://doi.org/10.1007/s11390-022-2188-4

149

Views

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 January 2022
Accepted: 01 November 2022
Published: 05 December 2024
© Institute of Computing Technology, Chinese Academy of Sciences 2024