Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Coincidence detection of two curves or two surfaces has wide application in computer-aided design (CAD) and computer-aided geometric design (CAGD). Proper reparameterization is the most complicated part in the detection. This paper presents and proves the efficient and necessary coincidence condition for two rational Bézier curves in a new way. It also proposes an effective and efficient proper reparameterization method,
Sederberg T W, Meyers R J. Loop detection in surface patch intersections. Computer Aided Geometric Design, 1988, 5(2): 161–171. DOI: 10.1016/0167-8396(88)90029-5.
Sederberg T W, Nishita T. Curve intersection using Bézier clipping. Computer-Aided Design, 1990, 22(9): 538–549. DOI: 10.1016/0010-4485(90)90039-F.
Hu C Y, Maekawa T, Patrikalakis N M, Ye X. Robust interval algorithm for surface intersections. Computer-Aided Design, 1997, 29(9): 617–627. DOI: 10.1016/S0010-4485(96)00099-1.
Mørken K, Reimers M, Schulz C. Computing intersections of planar spline curves using knot insertion. Computer Aided Geometric Design, 2009, 26(3): 351–366. DOI: 10.1016/j.cagd.2008.07.005.
Schulz C. Bézier clipping is quadratically convergent. Computer Aided Geometric Design, 2009, 26(1): 61–74. DOI: 10.1016/j.cagd.2007.12.006.
Wang W K, Zhang H, Liu X M, Paul J C. Conditions for coincidence of two cubic Bézier curves. Journal of Computational and Applied Mathematics, 2011, 235(17): 5198–5202. DOI: 10.1016/j.cam.2011.05.006.
Garcia C B, Li T Y. On the number of solutions to polynomial systems of equations. SIAM Journal on Numerical Analysis, 1980, 17(4): 540–546. DOI: 10.1137/0717046.
Chen X D, Ma W, Deng C. Conditions for the coincidence of two quartic Bézier curves. Applied Mathematics and Computation, 2013, 225: 731–736. DOI: 10.1016/j.amc.2013.09.053.
Sánchez-Reyes J. The conditions for the coincidence or overlapping of two Bézier curves. Applied Mathematics and Computation, 2014, 248: 625–630. DOI: 10.1016/j.amc.2014.10.008.
Berry T G, Patterson R R. The uniqueness of Bézier control points. Computer Aided Geometric Design, 1997, 14(9): 877–879. DOI: 10.1016/S0167-8396(97)00016-2.
Chen X D, Yang C, Ma W. Coincidence condition of two Bézier curves of an arbitrary degree. Computers & Graphics, 2016, 54: 121–126. DOI: 10.1016/j.cag.2015.07.013.
Chen X D, Duan X H, Yang C, Wang Y G. The study of coincidence or partial coincidence condition for two rational cubic Bézier curves. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(9): 1648–1652. DOI: 10.3969/j.issn.1003-9775.2015.09.007. (in Chinese)
Wang W K, Li S K. Algorithm for coincident judgment of two cubic B-spline curves. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(5): 674–678. DOI: 10.3969/j.issn.1003-9775.2013.05.011. (in Chinese)
Sederberg T W. Improperly parametrized rational curves. Computer Aided Geometric Design, 1986, 3(1): 67–75. DOI: 10.1016/0167-8396(86)90025-7.
Pérez-Díaz S. On the problem of proper reparametrization for rational curves and surfaces. Computer Aided Geometric Design, 2006, 23(4): 307–323. DOI: 10.1016/j.cagd.2006.01.001.
Shen L Y, Pérez-Díaz S. Numerical proper reparametrization of parametric plane curves. Journal of Computational and Applied Mathematics, 2015, 277: 138–161. DOI: 10.1016/j.cam.2014.09.012.
Shen L Y, Pérez-Díaz S, Yang Z. Numerical proper reparametrization of space curves and surfaces. Computer-Aided Design, 2019, 116: 102732. DOI: 10.1016/j.cad.2019.07.001.
Pérez-Díaz S, Shen L Y. Inversion, degree, reparametrization and implicitization of improperly parametrized planar curves using μ-basis. Computer Aided Geometric Design, 2021, 84: 101957. DOI: 10.1016/j.cagd.2021.101957.
Gutierrez J, Rubio R, Sevilla D. On multivariate rational function decomposition. Journal of Symbolic Computation, 2002, 33(5): 545–562. DOI: 10.1006/jsco.2000.0529.
Corless R M, Watt S M, Zhi L. QR factoring to compute the GCD of univariate approximate polynomials. IEEE Trans. Signal Processing, 2004, 52(12): 3394–3402. DOI: 10.1109/TSP.2004.837413.
Chen X D, Ma W, Paul J C. Multi-degree reduction of Bézier curves using reparameterization. Computer-Aided Design, 2011, 43(2): 161–169. DOI: 10.1016/j.cad.2010.11.001.
Comments on this article