Journal Home > Volume 34 , Issue 1

The multicore evolution has stimulated renewed interests in scaling up applications on shared-memory multiprocessors, significantly improving the scalability of many applications. But the scalability is limited within a single node; therefore programmers still have to redesign applications to scale out over multiple nodes. This paper revisits the design and implementation of distributed shared memory (DSM) as a way to scale out applications optimized for non-uniform memory access (NUMA) architecture over a well-connected cluster. This paper presents MAGI, an efficient DSM system that provides a transparent shared address space with scalable performance on a cluster with fast network interfaces. MAGI is unique in that it presents a NUMA abstraction to fully harness the multicore resources in each node through hierarchical synchronization and memory management. MAGI also exploits the memory access patterns of big-data applications and leverages a set of optimizations for remote direct memory access (RDMA) to reduce the number of page faults and the cost of the coherence protocol. MAGI has been implemented as a user-space library with pthread-compatible interfaces and can run existing multithreaded applications with minimized modifications. We deployed MAGI over an 8-node RDMAenabled cluster. Experimental evaluation shows that MAGI achieves up to 9.25x speedup compared with an unoptimized implementation, leading to a scalable performance for large-scale data-intensive applications.

File
jcst-34-1-94-Highlights.pdf (313 KB)
Publication history
Copyright

Publication history

Received: 13 June 2018
Revised: 21 November 2018
Published: 18 January 2019
Issue date: January 2019

Copyright

©2019 Springer Science + Business Media, LLC & Science Press, China
Return