Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To determine whether dynamic changes in serum total testosterone (TT) levels during controlled ovarian stimulation (COS) by a GnRH‐a (gonadotrophin‐releasing hormone agonist) long protocol may predict pregnancy in women with normal ovarian reserve in in vitro fertilization.
The TT measurements were added to routine hormone tests during COS. The TT dynamic changes, clinical pregnancy rate, and quality of oocytes and embryos of 109 patients were analyzed.
Compared with the non‐pregnancy group, in the pregnancy group the TT level on Gn initial day (TTinitial‐d) increased sharply when the dominant follicle reached a diameter 10–12 mm [TTfΦ (10–12)‐d] and on human chorionic gonadotrophin (HCG) day (TTHCG‐d), also the ratios of TTfΦ (10–12)‐d to TTinitial‐d (1.23 ± 0.37 vs. 1.10 ± 0.58, p = 0.040) and TTHCG‐d to TTinitial‐d (2.32 ± 1.26 vs. 2.00 ± 1.43, p = 0.019) increased notably. Of the 2 TT ratios, the first tertile limit was regarded as the threshold of high TT ratios (1.00, 1.45). High tertiles had higher pregnancy rates than low tertiles (82.86% vs. 42.11%, p = 0.006; 71.43% vs. 44.83%, p = 0.040). The 2 TT ratios were positively associated with the number of metaphase Ⅱ oocytes and good‐quality embryos.
Of COS in a long GnRH‐a protocol with optimized outcome, serum TT kinetics appears to be characterized by sharp rises at the early and late stages of follicle growth. The ratios of TTΦ (10–12)‐d to TTinitial‐d and TTHCG‐d to TTinitial‐d may be predictors for pregnancy and qualitative outcomes of oocytes and embryos.
Teissier MP, Chable H, Paulhac S, Aubard Y. Comparison of follicle steroidogenesis from normal and polycystic ovaries in women undergoing IVF: relationship between steroid concentrations, follicle size, oocyte quality and fecundability. Hum Reprod. 2000;15(12):2471–7. https://doi.org/10.1093/humrep/15.12.2471
Vegetti W, Alagna F. FSH and folliculogenesis: from physiology to ovarian stimulation. Reprod Biomed Online. 2006;12(6):684–94. https://doi.org/10.1016/s1472-6483(10)61080-2
Filicori M, Cognigni GE. Roles and novel regimens of luteinizing hormone and follicle‐stimulating hormone in ovulation induction. J Clin Endocrinol Metab. 2001;86(4):1437–41. https://doi.org/10.1210/jcem.86.4.7385
Yang Y, Ouyang N, Ye Y, Hu Q, Du T, Di N, et al. The predictive value of total testosterone alone for clinical hyperandrogenism in polycystic ovary syndrome. RBMO. 2020;41(4):734–42. https://doi.org/10.1016/j.rbmo.2020.07.013
Frattarelli JL, Gerber MD. Basal and cycle androgen levels correlate with in vitro fertilization stimulation parameters but do not predict pregnancy outcome. Fertil Steril. 2006;86(1):51–7. https://doi.org/10.1016/j.fertnstert.2005.12.028
Qin Y, Zhao Z, Sun M, Geng L, Che L, Chen Z. Association of basal serum testosterone levels with ovarian response and in vitro fertilization outcome. Reprod Biol Endocrinol. 2011;9(1):9–16. https://doi.org/10.1186/1477-7827-9-9
Lu Q, Shen H, Li Y, Zhang C, Wang C, Chen X, et al. Low testosterone levels in women with diminished ovarian reserve impair embryo implantation rate: a retrospective case‐control study. J Assist Reprod Genet. 2014;31(4):485–91. https://doi.org/10.1007/s10815-014-0186-3
Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau‐Jonard S. Interactions between androgens, FSH, anti‐Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22(6):709–24. https://doi.org/10.1093/humupd/dmw027
Gervásio CG, Bernuci MP, Sliva‐de‐Sá MF, de Sá Rosa‐e‐Silva ACJ. The role of androgen hormones in early follicular development. Obstet Gynecol. 2014;2014:1–11. Article ID:818010. https://doi.org/10.1155/2014/818010
Laird M, Thomson K, Fenwick M, Mora J, Franks S, Hardy K. Androgen stimulates growth of mouse preantral follicles in vitro: interaction with follicle‐stimulating hormone and with growth factors of the TGFβ superfamily. Endocrinology. 2017;158(4):920–35. https://doi.org/10.1210/en.2016-1538
Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle‐stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab. 1999;84(8):2951–6. https://doi.org/10.1210/jcem.84.8.5929
Jeve YB, Bhandari HM. Effective treatment protocol for poor ovarian response: a systematic review and meta‐analysis. J Hum Reprod Sci. 2016;9(2):70–81. https://doi.org/10.4103/0974-1208.183515
Walters KA, Allan CM, Jimenez M, Lim PR, Davey RA, Zajac JD, et al. Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age‐dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology. 2007;148(8):3674–84. https://doi.org/10.1210/en.2007-0248
Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, et al. Premature ovarian failure in androgen receptor‐deficient mice. Proc Natl Scad Sci USA. 2006;103(1):224–9. https://doi.org/10.1073/pnas.0506736102
Wongwananuruk T, Sato T, Kajihara T, Matsumoto S, Akita M, Tamura K, et al. Endometrial androgen signaling and decidualization regulate trophoblast expansion and invasion in co‐culture: a time‐lapse study. Placenta. 2016;47:56–62. https://doi.org/10.1016/j.placenta.2016.09.005
Cloke B, Huhtinen K, Fusi L, Kajihara T, Yliheikkilä M, Ho KK, et al. The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinology. 2008;149(9):4462–74. https://doi.org/10.1210/en.2008-0356
Diao HL, Su RW, Tan HN, Li SJ, Lei W, Deng WB, et al. Effects of androgen on embryo implantation in the mouse delayed‐implantation model. Fertil Steril. 2008;90(Suppl 2):1376–83. https://doi.org/10.1016/j.fertnstert.2007.07.1341
Burger HG, Dudley EC, Cui J, Dennerstein L, Hopper JL. A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate, and sex hormone‐binding globulin levels through the menopause transition. J Clin Endrocrinol Metab. 2000;85(8):2832–8. https://doi.org/10.1210/jc.85.8.2832
Gleicher N, Kim A, Weghofer A, Kushnir VA, Shohat‐Tal A, Lazzaroni E, et al. Hypoandrogenism in association with diminished functional ovarian reserve. Hum Reprod. 2013;28(4):1084–91. https://doi.org/10.1093/humrep/det033
Guo J, Zhang Q, Li Y, Huang J, Wang W, Huang L, et al. Predictive value of androgens and multivariate model for poor ovarian response. RBMO. 2014;28(6):723–32. https://doi.org/10.1016/j.rbmo.2014.02.009
Astapova O, Minor BNN, Hammes SR. Physiological and pathological androgen actions in the ovary. Endocrinology. 2019;160(5):1166–74. https://doi.org/10.1210/en.2019-00101
Løssl K, Freiesleben NIC, Wissing ML, Petersen KB, Holt MD, Mamsen LS, et al. Biological and clinical rationale for androgen priming in ovarian stimulation. Front Endocrinol. 2020;11:627. https://doi.org/10.3389/fendo.2020.00627
Frattarelli JL, Peterson EH. Effect of androgen levels on in vitro fertilization cycles. Fertil Steril. 2004;81(6):1713–4. https://doi.org/10.1016/j.fertnstert.2003.11.032
Wang ET, Diamond MP, Alvero R, Casson P, Christman GM, Coutifaris C, et al. Androgenicity and fertility treatment in women with unexplained infertility. Fertil Steril. 2020;113(3):636–41. https://doi.org/10.1016/j.fertnstert.2019.10.034
Walters KA, Paris VR, Aflatounian A, Handelsman DJ. Androgens and ovarian function: translation from basic discovery research to clinical impact. J Endocrinol. 2019;242(2):R23–50. https://doi.org/10.1530/joe-19-0096
Neves AR, Montoya‐Botero P, Polyzos NP. Androgens and diminished ovarian reserve: the long road from basic science to clinical implementation. A comprehensive and systematic review with meta‐analysis. Am J Obstet Gynecol. 2022;227(3):401–13.e18. https://doi.org/10.1016/j.ajog.2022.03.051
Prizant H, Gleicher N, Sen A. Androgen actions in the ovary: balance is key. J Endocrinol. 2014;222(3):141–51. https://doi.org/10.1530/joe-14-0296
Lebbe M, Wooddruff TK. Involvement of androgen in ovarian health and disease. Mol Hum Reprod. 2013;19(12):828–37. https://doi.org/10.1093/molehr/gat065
Lebbe M, Taylor AE, Visser JA, Kirkman‐Brown J, Woodruff TK, Arlt W. The steroid metabolome in the isolated ovarian follicle and its response to androgen exposure and antagonism. Endocrinology. 2017;158(5):1474–85. https://doi.org/10.1210/en.2016-1851
Massafra C, De Felice C, Agnusdei DP, Gioia D, Bagnoli F. Androgens and osteocalcin during the menstrual cycle. J Clin Endocrinol Metab. 1999;84(3):971–4. https://doi.org/10.1210/jc.84.3.971
Castracane VD, Stewart DR, Gimpel T, Overstreet JW, Lasley BL. Maternal serum androgens in human pregnancy: early increases within the cycle of conception. Hum Reprod. 1998;13(2):460–4. https://doi.org/10.1093/humrep/13.2.460
Rodier F, Coppé JP, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, et al. Persistent DNA damage signalling triggers senescence‐associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11(8):973–9. https://doi.org/10.1038/ncb1909
Bianchi VE. The anti‐inflammatory effects of testosterone. J Endocrine Society. 2019;3(1):91–107. https://doi.org/10.1210/js.2018-00186
McNairn AJ, Chuang CH, Bloom JC, Wallace MD, Schimenti JC. Female‐biased embryonic death from genomic instability‐induced inflammation. Nature. 2019;567(7746):105–8. https://doi.org/10.1038/s41586-019-0936-6
Noushin MA, Sahu A, Singh S, Singh S, Jayaprakasan K, Basheer R, et al. Dehydroepiandrosterone (DHEA) role in enhancement and maintenance of implantation (DREAM): randomised double‐blinded placebo‐controlled trial‐study protocol. BMJ Open. 2021;11(10):e054251. https://doi.org/10.1136/bmjopen-2021-054251
Iancu M, Albu A, Albu D. Androgens and controlled ovarian stimulation outcomes. Int J Sci Basic Appl Res. 2022;62(1):250–60.
de los Santos MJ, García‐Laez V, Beltrán D, Labarta E, Zuzuarregui JL, Alamá P, et al. The follicular hormone profile in low‐responder patients undergoing unstimulated cycles: is it hypoandrogenic? Hum Reprod. 2013;28(1):224–9. https://doi.org/10.1093/humrep/des349
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.