Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The word “theranostics” describes an emerging trend in medicine in which the distinction between diagnosis and therapy blurs. Light or photo is used in theranostics to obtain high precision and personalised treatment. As only malignant tissues need to be spared, photo‐triggered theranostics provide highly selective targeting using real‐time imaging. Using nanotechnology to organise a dual‐modality approach is an efficient way to circumvent pharmacokinetic limitations. Photodynamic therapy has been used successfully in the clinic for a while now, and this has paved the path for photo‐triggered theranostics to be developed. The use of light‐activated theranostic nanoforms has progressed from preclinical studies in animals and labs to clinical trials in humans. As both nanomaterials and their methods of manufacture advance, the theranostic approach becomes more nuanced and may be used in a wider range of real‐time imaging and therapy modalities. The depth of anatomical access is also expanding because of developments in light delivery technologies. Combined, these innovations will hasten early cancer diagnosis and make tailored treatment more feasible. A non‐invasive assessment approach also increases patient compliance and reduces risk. Researchers constantly make strides in their effort to create more versatile photo‐sensitive nanoparticles. With any luck, photo‐triggered theranostics may significantly reduce toxicity. In order to provide a better and safer clinical outcome in cancer therapy, this review aims to highlight the latest and greatest innovation research in the domain of nanotheranostics and its photo‐triggering, and to sketch the possibilities for further progression and integration of nanoconstructs and photo‐delivery, and trying to target approach in photo‐triggered theranostics.
Xie Z, Fan T, An J, Choi W, Duo Y, Ge Y, et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem Soc Rev. 2020;49(22):8065–87. https://doi.org/10.1039/D0CS00215A
Shanmugam V, Selvakumar S, Yeh CS. Near‐infrared light‐responsive nanomaterials in cancer therapeutics. Chem Soc Rev. 2014;43(17):6254–87. https://doi.org/10.1039/c4cs00011k
Gøtzsche PC. Niels finsen’s treatment for lupus vulgaris. J R Soc Med. 2011;104(1):41–2. https://doi.org/10.1258/jrsm.2010.10k066
Møller KI, Kongshoj B, Philipsen PA, Thomsen VO, Wulf HC. How Finsen’s light cured lupus vulgaris. Photodermatol Photoimmunol Photomed. 2005;21(3):118–24. https://doi.org/10.1111/j.1600‐0781.2005.00159.x
Rosenthal NE, Sack DA, Gillin JC, et al. Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatr. 1984;41(1):72–80. https://doi.org/10.1001/archpsyc.1984.01790120076010
Terman M, Terman JS, Quitkin FM, et al. Light therapy for seasonal affective disorder. Rev Efficacy, Neuropsychopharmacol. 1989;2(1):1–22. https://doi.org/10.1016/0893‐133x(89)90002‐x
Perera S, Eisen R, Bhatt M, Bhatnagar N, de Souza R, Thabane L, et al. Light therapy for non‐seasonal depression: systematic review and meta‐analysis. BJPsych Open. 2016;2(2):116–26. https://doi.org/10.1192/bjpo.bp.115.001610
Dodson ER, Zee PC. Therapeutics for circadian rhythm sleep disorders. Sleep Med Clin. 2010;5(4):701–15. https://doi.org/10.1016/j.jsmc.2010.08.001
Qiu M, Ren WX, Jeong T, Won M, Park GY, Sang DK, et al. Omnipotent phosphorene: a next‐generation, two‐dimensional nanoplatform for multidisciplinary biomedical applications. Chem Soc Rev. 2018;47(15):5588–601. https://doi.org/10.1039/c8cs00342d
Lee GH, Moon H, Kim H, Kwon W, Yoo S, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater. 2020;5(2):149–65. https://doi.org/10.1038/s41578‐019‐0167‐3
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev. 2016;45(23):6597–626. https://doi.org/10.1039/c6cs00271d
Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, et al. A size‐reducible nanodrug with an aggregation‐enhanced photodynamic effect for deep chemo‐photodynamic therapy. Angew Chem Int Ed. 2018;57(35):11384–8. https://doi.org/10.1002/anie.201807602
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48(7):2053–108. https://doi.org/10.1039/c8cs00618k
Chen J, Fan T, Xie Z, Zeng Q, Xue P, Zheng T, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials. 2020;237:119827. https://doi.org/10.1016/j.biomaterials.2020.119827
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9. https://doi.org/10.1016/j.addr.2012.10.002
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–5. https://doi.org/10.1016/j.addr.2010.03.011
Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017;46(12):3830–52. https://doi.org/10.1039/c6cs00592f
Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, et al. Development and applications of photo‐triggered theranostic agents. Adv Drug Deliv Rev. 2010;62(11):1094–124. https://doi.org/10.1016/j.addr.2010.09.002
Deng S, Li X, Liu S, Chen J, Li M, Chew SY, et al. Codelivery of CRISPR‐Cas9 and chlorin e6 for spatially controlled tumor‐specific gene editing with synergistic drug effects. Sci Adv. 2020;6(29):eabb4005. https://doi.org/10.1126/sciadv.abb4005
Nakielski P, Pawłowska S, Rinoldi C, Ziai Y, De Sio L, Urbanek O, et al. Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel: a smart nanostructured pillow for near‐infrared light‐driven biomedical applications. ACS Appl Mater Interfaces. 2020;12(49):54328–42. https://doi.org/10.1021/acsami.0c13266
Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near‐infrared deep brain stimulation via upconversion nanoparticle‐mediated optogenetics. Science. 2018;359(6376):679–84. https://doi.org/10.1126/science.aaq1144
Zheng B, Bai Y, Chen H, Pan H, Ji W, Gong X, et al. Near‐infrared light‐excited upconverting persistent nanophosphors in vivo for imaging‐guided cell therapy. ACS Appl Mater Interfaces. 2018;10(23):19514–22. https://doi.org/10.1021/acsami.8b05706
Wan Y, Lu G, Zhang J, Wang Z, Li X, Chen R, et al. A biocompatible free radical nanogenerator with real‐time monitoring capability for high performance sequential hypoxic tumor therapy. Adv Funct Mater. 2019;29(39):1903436. https://doi.org/10.1002/adfm.201903436
Zhou F, Wang M, Luo T, Qu J, Chen WR. Photo‐activated chemo‐immunotherapy for metastatic cancer using a synergistic graphene nanosystem. Biomaterials. 2021;265:120421. https://doi.org/10.1016/j.biomaterials.2020.120421
Hu K, Xie L, Zhang Y, Hanyu M, Yang Z, Nagatsu K, et al. Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET‐guided combination cancer therapy. Nat Commun. 2020;11(1):2778. https://doi.org/10.1038/s41467‐020‐16513‐0
Lin H, Gao S, Dai C, Chen Y, Shi J. A two‐dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR‐Ⅰ and NIR‐Ⅱ biowindows. J Am Chem Soc. 2017;139(45):16235–47. https://doi.org/10.1021/jacs.7b07818
Guglielmelli A, Rosa P, Contardi M, Prato M, Mangino G, Miglietta S, et al. Biomimetic keratin gold nanoparticle‐mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine. 2021;16(2):121–38. https://doi.org/10.2217/nnm‐2020‐0349
Yang W, Guo W, Le W, Lv G, Zhang F, Shi L, et al. Albumin‐bioinspired Gd: CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging‐guided tumor‐targeted photothermal therapy. ACS Nano. 2016;10(11):10245–57. https://doi.org/10.1021/acsnano.6b05760
Li J, Xie C, Huang J, Jiang Y, Miao Q, Pu K. Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew Chem Int Ed. 2018;57(15):3995–8. https://doi.org/10.1002/anie.201800511
Zhang L, Wang S, Zhou Y, Wang C, Zhang X, Deng H. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew Chem Int Ed. 2019;58(40):14213–18. https://doi.org/10.1002/anie.201909020
Han R, Zhao M, Wang Z, Liu H, Zhu S, Huang L, et al. Super‐efficient in vivo two‐photon photodynamic therapy with a gold nanocluster as a type Ⅰ photosensitizer. ACS Nano. 2020;14(8):9532–44. https://doi.org/10.1021/acsnano.9b05169
Luo T, Ni K, Culbert A, Lan G, Jiang X, et al. Nanoscale metal‐organic frameworks stabilize bacteriochlorins for type Ⅰ and type Ⅱ photodynamic therapy. J Am Chem Soc. 2020;142(16):7334–9. https://doi.org/10.1021/jacs.0c02129
Xu W, Lee MMS, Nie JJ, Zhang Z, Kwok RTK, Lam JWY, et al. Three‐pronged attack by homologous far‐red/NIR AIEgens to achieve 1+1+1>3 synergistic enhanced photodynamic therapy. Angew Chem Int Ed. 2020;59(24):9610–16. https://doi.org/10.1002/anie.202000740
Yang Y, Wang L, Cao H, Li Q, Li Y, Han M, et al. Photodynamic therapy with liposomes encapsulating photosensitizers with aggregation‐induced emission. Nano Lett. 2019;19(3):1821–6. https://doi.org/10.1021/acs.nanolett.8b04875
Zheng B, Su L, Pan H, Hou B, Zhang Y, Zhou F, et al. NIR‐remote selected activation gene expression in living cells by upconverting microrods. Adv Mater. 2016;28(4):707–14. https://doi.org/10.1002/adma.201503961
Tang L, Yang Z, Zhou Z, Ma Y, Kiesewetter DO, Wang Z, et al. A logic‐gated modular nanovesicle enables programmable drug release for on‐demand chemotherapy. Theranostics. 2019;9(5):1358–68. https://doi.org/10.7150/thno.32106
Lin LS, Yang X, Zhou Z, Jacobson O, Liu Y, et al. Yolk‐shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic‐plasmonic hybrid theranostic platform. Adv Mater. 2017;29(21):1606681. https://doi.org/10.1002/adma.201606681
Kolemen S, Ozdemir T, Lee D, Kim GM, Karatas T, Yoon J, et al. Remote‐controlled release of singlet oxygen by the plasmonic heating of endoperoxide‐modified gold nanorods: towards a paradigm change in photodynamic therapy. Angew Chem Int Ed. 2016;55(11):3606–10. https://doi.org/10.1002/anie.201510064
Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, et al. Thermo‐triggered release of CRISPR‐Cas9 system by lipid‐encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed. 2018;57(6):1491–6. https://doi.org/10.1002/anie.201708689
Pei P, Sun C, Tao W, Li J, Yang X, Wang J. ROS‐sensitive thioketal‐linked polyphosphoester‐doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials. 2019;188:74–82. https://doi.org/10.1016/j.biomaterials.2018.10.010
Chen J, Liu L, Motevalli SM, Wu X, Yang XH, Li X, et al. Light‐triggered retention and cascaded therapy of albumin‐based theranostic nanomedicines to alleviate tumor adaptive treatment tolerance. Adv Funct Mater. 2018;28(17):1707291. https://doi.org/10.1002/adfm.201707291
Fei Z, Fan Q, Dai H, Zhou X, Xu J, Ma Q, et al. Physiologically triggered injectable red blood cell‐based gel for tumor photoablation and enhanced cancer immunotherapy. Biomaterials. 2021;271:120724. https://doi.org/10.1016/j.biomaterials.2021.120724
Lv G, Guo W, Zhang W, Zhang T, Li S, Chen S, et al. Near‐infrared emission CuInS/ZnS quantum dots: all‐in‐one theranostic nanomedicines with intrinsic fluorescence/photoacoustic imaging for tumor phototherapy. ACS Nano. 2016;10(10):9637–45. https://doi.org/10.1021/acsnano.6b05419
Liu H, Lv X, Qian J, Qian Y, Wang X, et al. Graphitic carbon nitride quantum dots embedded in carbon nanosheets for near‐infrared imaging‐guided combined photo‐chemotherapy. ACS Nano. 2020;14(10):13304–15. https://doi.org/10.1021/acsnano.0c05143
Liu Y, Shu G, Li X, Chen H, Zhang B, Pan H, et al. Human HSP70 promoter‐based Prussian blue nanotheranostics for thermo‐controlled gene therapy and synergistic photothermal ablation. Adv Funct Mater. 2018;28(32):1802026. https://doi.org/10.1002/adfm.201802026
Huang X, Jain PK, El‐Sayed IH, El‐Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Laser Med Sci. 2008;23(3):217–28. https://doi.org/10.1007/s10103‐007‐0470‐x
Wan X, Zhong H, Pan W, Li Y, Chen Y, et al. Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO(3) mineralized metal‐organic framework. Angew Chem Int Ed. 2019;58(40):14134–9. https://doi.org/10.1002/anie.201907388
Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH, et al. Emerging applications of nanotechnology in healthcare systems: grand challenges and perspectives. Pharmaceuticals. 2021;14(8):707. https://doi.org/10.3390/ph14080707
Katz JS, Burdick JA. Light‐responsive biomaterials: development and applications, Macromol. Bioscience. 2010;10(4):339–48. https://doi.org/10.1002/mabi.200900297
Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, et al. Gold nanocages as photothermal transducers for cancer treatment. Small. 2010;6(7):811–17. https://doi.org/10.1002/smll.200902216
Nagesha D, Laevsky GS, Lampton P, et al. In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles. Int J Nanomed. 2007;2(4):813–19.
Young JK, Figueroa ER, Drezek RA. Tunable nanostructures as photothermal theranostic agents. Ann Biomed Eng. 2012;40(2):438–59. https://doi.org/10.1007/s10439‐011‐0472‐5
Day ES, Bickford LR, Slater JH, et al. Antibody‐conjugated gold‐gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomed. 2010;5:445–54. https://doi.org/10.2147/ijn.s10881
Choi WI, Kim JY, Kang C, Byeon CC, Tae G. Tumor regression in vivo by photothermal therapy based on gold‐nanorod‐loaded, functional nanocarriers. ACS Nano. 2003;5(3):1995–2003. https://doi.org/10.1021/nn103047r
Kuo WS, Chang CN, Chang YT, Yang MH, Chien YH, Chen SJ, et al. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near‐infrared optical imaging. Angew Chem Int Ed Engl. 2010;49(15):2711–15. https://doi.org/10.1002/anie.200906927
Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res. 2008;41(12):1587–95. https://doi.org/10.1021/ar800018v
Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, et al. Gold nanocages covered by smart polymers for controlled release with near‐infrared light. Nat Mater. 2009;8(12):935–9. https://doi.org/10.1038/nmat2564
Chen Y, Gryshuk A, Achilefu S, Ohulchansky T, Potter W, Zhong T, et al. A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy. Bioconjugate Chem. 2005;16(5):1264–74. https://doi.org/10.1021/bc050177o
DO L, Lukianova E, Oraevsky AA. Selective laser nano‐thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Laser Surg Med. 2006;38(6):631–42. https://doi.org/10.1002/lsm.20359
Lukianova‐Hleb EY, AO O, Samaniego AP, Shenefelt DL, Wagner DS, Hafner JH, et al. Tunable plasmonic nanoprobes for theranostics of prostate cancer. Theranostics. 2011;1:3–17. https://doi.org/10.7150/thno/v01p0003
Wagner DS, Delk NA, Lukianova‐Hleb EY, Hafner JH, Farach‐Carson MC, Lapotko DO. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials. 2010;31(29):7567–74. https://doi.org/10.1016/j.biomaterials.2010.06.031
Lukianova‐Hleb EY, Mutonga MBG, DO L. Cell‐specific multifunctional processing of heterogeneous cell systems in a single laser pulse treatment. ACS Nano. 2012;6(12):10973–81. https://doi.org/10.1021/nn3045243
Huang X, El‐Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1(1):13–28. https://doi.org/10.1016/j.jare.2010.02.002
Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J, Hatcher HC, et al. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res. 2010;70(23):9855–64. https://doi.org/10.1158/0008‐5472.CAN‐10‐0250
Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, et al. Ultrasmall reduced graphene oxide with high near‐infrared absorbance for photothermal therapy. J Am Chem Soc. 2011;133(17):6825–31. https://doi.org/10.1021/ja2010175
Ghosh S, Bachilo SM, Simonette RA, Beckingham KM, Weisman RB. Oxygen doping modifies near‐infrared band gaps in fluorescent single‐walled carbon nanotubes. Science. 2010;330(6011):1656–9. https://doi.org/10.1126/science.1196382
Hong C, Kang J, Lee J, Zheng H, Hong S, Lee D, et al. Photothermal therapy using TiO2 nanotubes in combination with near‐infrared laser. J Cancer Ther. 2010;1(2):52–8. https://doi.org/10.4236/jct.2010.12009
Rossella F, Soldano C, Bellani V, Tommasini M. Metal‐filled carbon nanotubes as a novel class of photothermal nanomaterials. Adv Mater. 2012;24(18):2453–8. https://doi.org/10.1002/adma.201104393
Zhang L, Zhen SJ, Sang Y, Li JY, Wang Y, et al. Controllable preparation of metal nanoparticle/carbon nanotube hybrids as efficient dark field light scattering agents for cell imaging. Chem Commun. 2010;46(24):4303–5. https://doi.org/10.1039/c0cc00231c
Montanari J, Maidana C, Esteva MI, Salomon C, Morilla MJ, Romero EL. Sunlight triggered photodynamic ultradeformable liposomes against Leishmania braziliensis are also leishmanicidal in the dark. J Contr Release. 2010;147(3):368–76. https://doi.org/10.1016/j.jconrel.2010.08.014
Shen R, Mu B, Du P, Liu P. Preparation of photo‐sensitive degradable polymeric nanocapsules from dendrimer grafted nano‐silica templates. Soft Mater. 2011;9(4):382–92. https://doi.org/10.1080/1539445x.2010.525181
Zhou K, Wang Y, Huang X, Luby‐Phelps K, Sumer BD, Gao J. Tunable, ultrasensitive pH‐responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed. 2011;50(27):6109–14. https://doi.org/10.1002/anie.201100884
Qian X, Peng XH, Ansari DO, Yin‐Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface‐enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26(1):83–90. https://doi.org/10.1038/nbt1377
Bae BC, Na K. Development of polymeric cargo for delivery of photosensitizer in photodynamic therapy. Int J Photoenergy. 2012;2012:431975–2014. https://doi.org/10.1155/2012/431975
Umeyama T, Kawabata K, Tezuka N, Matano Y, Miyato Y, Matsushige K, et al. Dispersion of carbon nanotubes by photo‐ and thermal‐responsive polymers containing azobenzene unit in the backbone. Chem Commun. 2010;46(32):5969–71. https://doi.org/10.1039/c0cc00709a
Bae BC, Na K. Self‐quenching polysaccharide‐based nanogels of pullulan/folate‐photosensitizer conjugates for photodynamic therapy. Biomaterials. 2010;31(24):6325–35. https://doi.org/10.1016/j.biomaterials.2010.04.030
Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater. 2011;10(4):324–32. https://doi.org/10.1038/nmat2986
Umeda Y, Kojima C, Harada A, Horinaka H, Kono K. PEG‐attached PAMAM dendrimers encapsulating gold nanoparticles: growing gold nanoparticles in the dendrimers for improvement of their photothermal properties. Bioconjugate Chem. 2010;21(8):1559–64. https://doi.org/10.1021/bc1001399
Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011;11(6):2560–6. https://doi.org/10.1021/nl201400z
Moleavin I, Ibanescu C, Hodorog‐Rusu A, Peptu E, Doroftei F, Hurduc N. Amphiphilic azopolymers capable to generate photo‐sensitive micelles. Cent Eur J Chem. 2011;9(6):1117–25. https://doi.org/10.2478/s11532‐011‐0102‐y
Ren K, Purdue PE, Burton L, Quan L, Fehringer EV, Thiele GM, et al. Early detection and treatment of wear particle‐induced inflammation and bone loss in a mouse calvarial osteolysis model using HPMA copolymer conjugates. Mol Pharm. 2011;8(4):1043–51. https://doi.org/10.1021/mp2000555
Bogart LK, Taylor A, Cesbron Y, Murray P, Lévy R. Photothermal microscopy of the core of dextran‐coated iron oxide nanoparticles during cell uptake. ACS Nano. 2012;6(7):5961–71. https://doi.org/10.1021/nn300868z
Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, et al. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials. 2012;33(7):2215–22. https://doi.org/10.1016/j.biomaterials.2011.11.069
Shim MS, Kwon YJ. Stimuli‐responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev. 2012;64(11):1046–59. https://doi.org/10.1016/j.addr.2012.01.018
Winnik FM, Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res. 2013;46(3):672–80. https://doi.org/10.1021/ar3000585
Qian W, Murakami M, Ichikawa Y, et al. Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. J Phys Chem C. 2011;115(47):23293–8. https://doi.org/10.1021/jp2079567
Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009;5(1):126–34. https://doi.org/10.1002/smll.200800003
Agrawal A, Connors M, Beylin A, Liang CP, Barton D, Chen Y, et al. Characterizing the point spread function of retinal OCT devices with a model eye‐based phantom. Biomed Opt Express. 2012;3(5):1116–26. https://doi.org/10.1364/BOE.3.0011163
Lu ZR. Molecular imaging of HPMA copolymers: visualizing drug delivery in cell, mouse and man. Adv Drug Deliv Rev. 2010;62(2):246–57. https://doi.org/10.1016/j.addr.2009.12.007
Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, et al. Emerging applications of stimuli‐responsive polymer materials. Nat Mater. 2010;9(2):101–13. https://doi.org/10.1038/nmat2614
Ding H, Yu H, Dong Y, Tian R, Huang G, Boothman DA, et al. Photoactivation switch from type Ⅱ to type Ⅰ reactions by electron‐rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J Contr Release. 2011;156(3):276–80. https://doi.org/10.1016/j.jconrel.2011.08.019
Cheng FY, Su CH, Wu PC, Yeh CS. Multifunctional polymeric nanoparticles for combined chemotherapeutic and near‐infrared photothermal cancer therapy in vitro and in vivo. Chem Commun. 2010;46(18):3167–9. https://doi.org/10.1039/b919172k
Park W, Cho S, Han J, Shin H, Na K, Lee B, et al. Advanced smart‐photosensitizers for more effective cancer treatment. Biomater Sci. 2017;6(1):79–90. https://doi.org/10.1039/c7bm00872d
van Furth R, Cohn ZA, Hirsch JG, et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972;46(6):845–52.
Maghsoudnia N, Eftekhari RB, Sohi AN, Norouzi P, Akbari H, Ghahremani MH, et al. Mitochondrial delivery of microRNA mimic let‐7b to NSCLC cells by PAMAM‐based nanoparticles. J Drug Target. 2020;28(7–8):818–30. https://doi.org/10.1080/1061186X.2020.1774594
Roy B, Ghose S, Biswas S. Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma. Semin Cell Dev Biol. 2022;124:134–44. https://doi.org/10.1016/j.semcdb.2021.04.006
Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436(7050):568–72. https://doi.org/10.1038/nature03794
Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441–54. https://doi.org/10.1093/jnci/djm135
Gkretsi V, Stylianou A, Papageorgis P, Polydorou C, Stylianopoulos T. Remodeling components of the tumor microenvironment to enhance cancer therapy. Front Oncol. 2015;5:214. https://doi.org/10.3389/fonc.2015.00214
Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015;25(4):198–213. https://doi.org/10.1016/j.tcb.2014.11.006
Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, et al. Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis. 2017;38(8):766–80. https://doi.org/10.1093/carcin/bgx063
Hingorani SR, Harris WP, Beck JT, Berdov BA, Wagner SA, Pshevlotsky EM, et al. Phase ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res. 2016;22(12):2848–54. https://doi.org/10.1158/1078‐0432.CCR‐15‐2010
Chen E, Han S, Song B, Xu L, Yuan H, Liang M, et al. Mechanism investigation of hyaluronidase‐combined multistage nanoparticles for solid tumor penetration and antitumor effect. Int J Nanomed. 2020;15:6311–24. https://doi.org/10.2147/IJN.S257164
Bu J, Nair A, Iida M, Jeong W, Poellmann MJ, Mudd K, et al. An avidity‐based PD‐L1 antagonist using nanoparticle‐antibody conjugates for enhanced immunotherapy. Nano Lett. 2020;20(7):4901–9. https://doi.org/10.1021/acs.nanolett.0c00953
Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T‐cell infiltration. Theranostics. 2021;11(11):5365–86. https://doi.org/10.7150/thno.58390
Yan S, Luo Z, Li Z, Wang Y, Tao J, Gong C, et al. Improving cancer immunotherapy outcomes using biomaterials. Angew Chem Int Ed. 2020;59(40):17332–43. https://doi.org/10.1002/anie.202002780
Sanaei MJ, Pourbagheri‐Sigaroodi A, Kaveh V, Sheikholeslami SA, Salari S, Bashash D. The application of nano‐medicine to overcome the challenges related to immune checkpoint blockades in cancer immunotherapy: recent advances and opportunities. Crit Rev Oncol Hematol. 2021;157:103160. https://doi.org/10.1016/j.critrevonc.2020.103160
Rios‐Doria J, Durham N, Wetzel L, Rothstein R, Chesebrough J, Holoweckyj N, et al. Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models. Neoplasia. 2015;17(8):661–70. https://doi.org/10.1016/j.neo.2015.08.004
Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, et al. Restoring anti‐tumor functions of T cells via nanoparticle‐mediated immune checkpoint modulation. J Contr Release. 2016;231:17–28. https://doi.org/10.1016/j.jconrel.2016.01.044
Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, et al. Combination immunotherapy of MUC1 mRNA nano‐vaccine and CTLA‐4 blockade effectively inhibits growth of triple negative breast cancer. Mol Ther. 2018;26(1):45–55. https://doi.org/10.1016/j.ymthe.2017.10.020
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/s0092‐8674(00)81683‐9
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013
Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, et al. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano. 2018;12(1):24–43. https://doi.org/10.1021/acsnano.7b05108
Yona S, Gordon S. From the reticuloendothelial to mononuclear phagocyte system ‐ the unaccounted years. Front Immunol. 2015;6:328. https://doi.org/10.3389/fimmu.2015.00328
Hume DA, Irvine KM, Pridans C. The mononuclear phagocyte system: the relationship between monocytes and macrophages. Trends Immunol. 2019;40(2):98–112. https://doi.org/10.1016/j.it.2018.11.007
Liang T, Zhang R, Liu X, Ding Q, Wu S, Li C, et al. Recent advances in macrophage‐mediated drug delivery systems. Int J Nanomed. 2021;16:2703–14. https://doi.org/10.2147/ijn.s298159
von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BY. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol. 2017;35(2):159–71. https://doi.org/10.1016/j.tibtech.2016.07.006
Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53(9):R61–R109. https://doi.org/10.1088/0031‐9155/53/9/R01
Jeong H, Huh M, Lee SJ, Koo H, Kwon IC, Jeong SY, et al. Photosensitizer‐conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics. 2011;1:230–9. https://doi.org/10.7150/thno/v01p0230
Moon HK, Son M, Park JE, Yoon SM, Lee SH, Choi HC. Significant increase in the water dispersibility of zinc phthalocyanine nanowires and applications in cancer phototherapy. NPG Asia Mater. 2012;4(4):e12. https://doi.org/10.1038/am.2012.22
Rukavina Z, Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8(2):18. https://doi.org/10.3390/pharmaceutics8020018
Chu B, Qu Y, He X, Hao Y, Yang C, Yang Y, et al. ROS‐responsive camptothecin prodrug nanoparticles for on‐demand drug release and combination of chemotherapy and photodynamic therapy. Adv Funct Mater. 2020;30(52):2005918. https://doi.org/10.1002/adfm.202005918
Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008;60(11):1226–40. https://doi.org/10.1016/j.addr.2008.03.015
Lin KY, Bagley AF, Zhang AY, Karl DL, Yoon SS, Bhatia SN. Gold nanorod photothermal therapy in a genetically engineered mouse model of soft tissue sarcoma. Nano LIFE. 2010;1(3n04):277–87. https://doi.org/10.1142/s1793984410000262
Zheng X, Zhou F, Wu B, Chen WR, Xing D. Enhanced tumor treatment using biofunctional indocyanine green‐containing nanostructure by intratumoral or intravenous injection. Mol Pharm. 2012;9(3):514–22. https://doi.org/10.1021/mp200526m
Patel RH, Wadajkar AS, Patel NL, Kavuri VC, Nguyen KT, Liu H. Multifunctionality of indocyanine green‐loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J Biomed Opt. 2012;17(4):046003. https://doi.org/10.1117/1.JBO.17.4.046003
Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS, et al. Gold nanomaterials conjugated with indocyanine green for dual‐modality photodynamic and photothermal therapy. Biomaterials. 2012;33(11):3270–8. https://doi.org/10.1016/j.biomaterials.2012.01.035
Ni W, Kou X, Yang Z, Wang J. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano. 2008;2(4):677–86. https://doi.org/10.1021/nn7003603
Terentyuk GS, Maslyakova GN, Lv S, Khlebtsov NG, Khlebtsov BN, Akchurin GG, et al. Laser‐induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt. 2009;14(2):021016. https://doi.org/10.1117/1.3122371
Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near‐infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007;7(7):1929–34. https://doi.org/10.1021/nl070610y
Conde J, Doria G, Baptista P, et al. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012;2012:751075–112. https://doi.org/10.1155/2012/751075
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):e10143. https://doi.org/10.1002/btm2.10143
Terentyuk GS, Maslyakova GN, Lv S, Khlebtsov BN, Kogan BY, Akchurin GG, et al. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. J Biophot. 2009;2(5):292–302. https://doi.org/10.1002/jbio.200910005
Matsushita‐Ishiodori Y, Ohtsuki T. Photoinduced RNA interference. Acc Chem Res. 2012;45(7):1039–47. https://doi.org/10.1021/ar200227n
EndohT OT. Cellular siRNA delivery using TatU1A and photo‐induced RNA interference. Methods Mol Biol. 2010;623:271–81. https://doi.org/10.1007/978‐1‐60761‐588‐0_17
Khlebtsov B, Panfilova E, Khanadeev V, Bibikova O, Terentyuk G, Ivanov A, et al. Nanocomposites containing silica‐coated gold‐silver nanocages and Yb‐2, 4‐dimethoxyhematoporphyrin: multifunctional capability of IR‐luminescence detection, photosensitization, and photothermolysis. ACS Nano. 2011;5(9):7077–89. https://doi.org/10.1021/nn2017974
Galanzha EI, Kim JW, Zharov VP. Nanotechnology‐based molecular photoacoustic and photothermal flow cytometry platform for in‐vivo detection and killing of circulating cancer stem cells. J Biophot. 2009;2(12):725–35. https://doi.org/10.1002/jbio.200910078
Singh AK, Hahn MA, Gutwein LG, et al. Multi‐dye theranostic nanoparticle platform for bioimaging and cancer therapy. Int J Nanomed. 2012;7:2739–50. https://doi.org/10.2147/IJN.S28357
Lee CM, Jeong HJ, Kim EM, Kim DW, Lim ST, et al. Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn Reson Med. 2009;62(6):1440–6. https://doi.org/10.1002/mrm.22123
Lee SM, Park H, Yoo KH. Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv Mater. 2010;22(36):4049–53. https://doi.org/10.1002/adma.201001040
Wu W, Shen J, Banerjee P, Zhou S. Core‐shell hybrid nanogels for integration of optical temperature‐sensing, targeted tumor cell imaging, and combined chemo‐photothermal treatment. Biomaterials. 2010;31(29):7555–66. https://doi.org/10.1016/j.biomaterials.2010.06.030
Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, et al. Folic acid‐conjugated silica‐modified gold nanorods for X‐ray/CT imaging‐guided dual‐mode radiation and photo‐thermal therapy. Biomaterials. 2011;32(36):9796–809. https://doi.org/10.1016/j.biomaterials.2011.08.086
Rossin R, Pan D, Qi K, et al. 64Cu‐labeled folate‐conjugated shell cross‐linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med. 2005;46(7):1210–18.
Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef‐Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol. 2010;55(11):3045–59. https://doi.org/10.1088/0031‐9155/55/11/004
Bagalkot V, Zhang L, Levy‐Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot‐aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi‐fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70. https://doi.org/10.1021/nl071546n
Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76. https://doi.org/10.1038/nbt994
Cheng SH, Lee CH, Chen MC, Souris JS, Tseng FG, Yang CS, et al. Tri‐functionalization of mesoporous silicananoparticles for comprehensive cancer theranostics—the trio of imaging, targeting and therapy. J Mater Chem. 2010;20(29):6149–57. https://doi.org/10.1039/C0JM00645A
McCarthy JR, Korngold E, Weissleder R, Jaffer FA. A light‐activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small. 2010;6(18):2041–9. https://doi.org/10.1002/smll.201000596
Lim YT, Cho MY, Choi BS, Noh YW, Chung BH. Diagnosis and therapy of macrophage cells using dextran‐coated near‐infrared responsive hollow‐type gold nanoparticles. Nanotechnology. 2008;19(37):375105. https://doi.org/10.1088/0957‐4484/19/37/375105
Reinert M, Bregy A, Kohler A, Steitz B, Petri‐Fink A, Bogni S, et al. Electromagnetic tissue fusion using superparamagnetic iron oxide nanoparticles: first experience with rabbit aorta. Open Surg J. 2008;2(1):3–9. https://doi.org/10.2174/1874300500802010003
Huang WC, Tsai PJ, Chen YC. Multifunctional Fe3O4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic‐resistant bacteria. Small. 2009;5(1):51–6. https://doi.org/10.1002/smll.200801042
Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J. 2006;90(2):619–27. https://doi.org/10.1529/biophysj.105.061895
Matteini P, Ratto F, Rossi F, de Angelis M, Cavigli L, Pini R. Hybrid nanocomposite films for laser‐activated tissue bonding. J Biophot. 2012;5(11–12):868–77. https://doi.org/10.1002/jbio.201200115
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.