Journal Home > Volume 1 , Issue 3

The word “theranostics” describes an emerging trend in medicine in which the distinction between diagnosis and therapy blurs. Light or photo is used in theranostics to obtain high precision and personalised treatment. As only malignant tissues need to be spared, photo‐triggered theranostics provide highly selective targeting using real‐time imaging. Using nanotechnology to organise a dual‐modality approach is an efficient way to circumvent pharmacokinetic limitations. Photodynamic therapy has been used successfully in the clinic for a while now, and this has paved the path for photo‐triggered theranostics to be developed. The use of light‐activated theranostic nanoforms has progressed from preclinical studies in animals and labs to clinical trials in humans. As both nanomaterials and their methods of manufacture advance, the theranostic approach becomes more nuanced and may be used in a wider range of real‐time imaging and therapy modalities. The depth of anatomical access is also expanding because of developments in light delivery technologies. Combined, these innovations will hasten early cancer diagnosis and make tailored treatment more feasible. A non‐invasive assessment approach also increases patient compliance and reduces risk. Researchers constantly make strides in their effort to create more versatile photo‐sensitive nanoparticles. With any luck, photo‐triggered theranostics may significantly reduce toxicity. In order to provide a better and safer clinical outcome in cancer therapy, this review aims to highlight the latest and greatest innovation research in the domain of nanotheranostics and its photo‐triggering, and to sketch the possibilities for further progression and integration of nanoconstructs and photo‐delivery, and trying to target approach in photo‐triggered theranostics.


menu
Abstract
Full text
Outline
About this article

Novel nanomaterials as photo‐activated cancer diagnostics and therapy

Show Author's information Deepika YadavRishabha Malviya ( )
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India

Abstract

The word “theranostics” describes an emerging trend in medicine in which the distinction between diagnosis and therapy blurs. Light or photo is used in theranostics to obtain high precision and personalised treatment. As only malignant tissues need to be spared, photo‐triggered theranostics provide highly selective targeting using real‐time imaging. Using nanotechnology to organise a dual‐modality approach is an efficient way to circumvent pharmacokinetic limitations. Photodynamic therapy has been used successfully in the clinic for a while now, and this has paved the path for photo‐triggered theranostics to be developed. The use of light‐activated theranostic nanoforms has progressed from preclinical studies in animals and labs to clinical trials in humans. As both nanomaterials and their methods of manufacture advance, the theranostic approach becomes more nuanced and may be used in a wider range of real‐time imaging and therapy modalities. The depth of anatomical access is also expanding because of developments in light delivery technologies. Combined, these innovations will hasten early cancer diagnosis and make tailored treatment more feasible. A non‐invasive assessment approach also increases patient compliance and reduces risk. Researchers constantly make strides in their effort to create more versatile photo‐sensitive nanoparticles. With any luck, photo‐triggered theranostics may significantly reduce toxicity. In order to provide a better and safer clinical outcome in cancer therapy, this review aims to highlight the latest and greatest innovation research in the domain of nanotheranostics and its photo‐triggering, and to sketch the possibilities for further progression and integration of nanoconstructs and photo‐delivery, and trying to target approach in photo‐triggered theranostics.

Keywords: immunotherapy, carbon nanotubes, phototherapy, gold based nanoparticles, thernostatics, tumour microenvironment

References(155)

[1]

Xie Z, Fan T, An J, Choi W, Duo Y, Ge Y, et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem Soc Rev. 2020;49(22):8065–87. https://doi.org/10.1039/D0CS00215A

[2]

Shanmugam V, Selvakumar S, Yeh CS. Near‐infrared light‐responsive nanomaterials in cancer therapeutics. Chem Soc Rev. 2014;43(17):6254–87. https://doi.org/10.1039/c4cs00011k

[3]

Gøtzsche PC. Niels finsen’s treatment for lupus vulgaris. J R Soc Med. 2011;104(1):41–2. https://doi.org/10.1258/jrsm.2010.10k066

[4]

Møller KI, Kongshoj B, Philipsen PA, Thomsen VO, Wulf HC. How Finsen’s light cured lupus vulgaris. Photodermatol Photoimmunol Photomed. 2005;21(3):118–24. https://doi.org/10.1111/j.1600‐0781.2005.00159.x

[5]

Rosenthal NE, Sack DA, Gillin JC, et al. Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatr. 1984;41(1):72–80. https://doi.org/10.1001/archpsyc.1984.01790120076010

[6]

Terman M, Terman JS, Quitkin FM, et al. Light therapy for seasonal affective disorder. Rev Efficacy, Neuropsychopharmacol. 1989;2(1):1–22. https://doi.org/10.1016/0893‐133x(89)90002‐x

[7]

Perera S, Eisen R, Bhatt M, Bhatnagar N, de Souza R, Thabane L, et al. Light therapy for non‐seasonal depression: systematic review and meta‐analysis. BJPsych Open. 2016;2(2):116–26. https://doi.org/10.1192/bjpo.bp.115.001610

[8]

Dodson ER, Zee PC. Therapeutics for circadian rhythm sleep disorders. Sleep Med Clin. 2010;5(4):701–15. https://doi.org/10.1016/j.jsmc.2010.08.001

[9]

Qiu M, Ren WX, Jeong T, Won M, Park GY, Sang DK, et al. Omnipotent phosphorene: a next‐generation, two‐dimensional nanoplatform for multidisciplinary biomedical applications. Chem Soc Rev. 2018;47(15):5588–601. https://doi.org/10.1039/c8cs00342d

[10]

Lee GH, Moon H, Kim H, Kwon W, Yoo S, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater. 2020;5(2):149–65. https://doi.org/10.1038/s41578‐019‐0167‐3

[11]

Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev. 2016;45(23):6597–626. https://doi.org/10.1039/c6cs00271d

[12]

Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, et al. A size‐reducible nanodrug with an aggregation‐enhanced photodynamic effect for deep chemo‐photodynamic therapy. Angew Chem Int Ed. 2018;57(35):11384–8. https://doi.org/10.1002/anie.201807602

[13]

Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48(7):2053–108. https://doi.org/10.1039/c8cs00618k

[14]

Chen J, Fan T, Xie Z, Zeng Q, Xue P, Zheng T, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials. 2020;237:119827. https://doi.org/10.1016/j.biomaterials.2020.119827

[15]

Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9. https://doi.org/10.1016/j.addr.2012.10.002

[16]

Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–5. https://doi.org/10.1016/j.addr.2010.03.011

[17]

Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017;46(12):3830–52. https://doi.org/10.1039/c6cs00592f

[18]

Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, et al. Development and applications of photo‐triggered theranostic agents. Adv Drug Deliv Rev. 2010;62(11):1094–124. https://doi.org/10.1016/j.addr.2010.09.002

[19]

Deng S, Li X, Liu S, Chen J, Li M, Chew SY, et al. Codelivery of CRISPR‐Cas9 and chlorin e6 for spatially controlled tumor‐specific gene editing with synergistic drug effects. Sci Adv. 2020;6(29):eabb4005. https://doi.org/10.1126/sciadv.abb4005

[20]

Nakielski P, Pawłowska S, Rinoldi C, Ziai Y, De Sio L, Urbanek O, et al. Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel: a smart nanostructured pillow for near‐infrared light‐driven biomedical applications. ACS Appl Mater Interfaces. 2020;12(49):54328–42. https://doi.org/10.1021/acsami.0c13266

[21]

Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near‐infrared deep brain stimulation via upconversion nanoparticle‐mediated optogenetics. Science. 2018;359(6376):679–84. https://doi.org/10.1126/science.aaq1144

[22]

Zheng B, Bai Y, Chen H, Pan H, Ji W, Gong X, et al. Near‐infrared light‐excited upconverting persistent nanophosphors in vivo for imaging‐guided cell therapy. ACS Appl Mater Interfaces. 2018;10(23):19514–22. https://doi.org/10.1021/acsami.8b05706

[23]

Wan Y, Lu G, Zhang J, Wang Z, Li X, Chen R, et al. A biocompatible free radical nanogenerator with real‐time monitoring capability for high performance sequential hypoxic tumor therapy. Adv Funct Mater. 2019;29(39):1903436. https://doi.org/10.1002/adfm.201903436

[24]

Zhou F, Wang M, Luo T, Qu J, Chen WR. Photo‐activated chemo‐immunotherapy for metastatic cancer using a synergistic graphene nanosystem. Biomaterials. 2021;265:120421. https://doi.org/10.1016/j.biomaterials.2020.120421

[25]

Hu K, Xie L, Zhang Y, Hanyu M, Yang Z, Nagatsu K, et al. Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET‐guided combination cancer therapy. Nat Commun. 2020;11(1):2778. https://doi.org/10.1038/s41467‐020‐16513‐0

[26]

Lin H, Gao S, Dai C, Chen Y, Shi J. A two‐dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR‐Ⅰ and NIR‐Ⅱ biowindows. J Am Chem Soc. 2017;139(45):16235–47. https://doi.org/10.1021/jacs.7b07818

[27]

Guglielmelli A, Rosa P, Contardi M, Prato M, Mangino G, Miglietta S, et al. Biomimetic keratin gold nanoparticle‐mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine. 2021;16(2):121–38. https://doi.org/10.2217/nnm‐2020‐0349

[28]

Yang W, Guo W, Le W, Lv G, Zhang F, Shi L, et al. Albumin‐bioinspired Gd: CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging‐guided tumor‐targeted photothermal therapy. ACS Nano. 2016;10(11):10245–57. https://doi.org/10.1021/acsnano.6b05760

[29]

Li J, Xie C, Huang J, Jiang Y, Miao Q, Pu K. Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew Chem Int Ed. 2018;57(15):3995–8. https://doi.org/10.1002/anie.201800511

[30]

Zhang L, Wang S, Zhou Y, Wang C, Zhang X, Deng H. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew Chem Int Ed. 2019;58(40):14213–18. https://doi.org/10.1002/anie.201909020

[31]

Han R, Zhao M, Wang Z, Liu H, Zhu S, Huang L, et al. Super‐efficient in vivo two‐photon photodynamic therapy with a gold nanocluster as a type Ⅰ photosensitizer. ACS Nano. 2020;14(8):9532–44. https://doi.org/10.1021/acsnano.9b05169

[32]

Luo T, Ni K, Culbert A, Lan G, Jiang X, et al. Nanoscale metal‐organic frameworks stabilize bacteriochlorins for type Ⅰ and type Ⅱ photodynamic therapy. J Am Chem Soc. 2020;142(16):7334–9. https://doi.org/10.1021/jacs.0c02129

[33]

Xu W, Lee MMS, Nie JJ, Zhang Z, Kwok RTK, Lam JWY, et al. Three‐pronged attack by homologous far‐red/NIR AIEgens to achieve 1+1+1>3 synergistic enhanced photodynamic therapy. Angew Chem Int Ed. 2020;59(24):9610–16. https://doi.org/10.1002/anie.202000740

[34]

Yang Y, Wang L, Cao H, Li Q, Li Y, Han M, et al. Photodynamic therapy with liposomes encapsulating photosensitizers with aggregation‐induced emission. Nano Lett. 2019;19(3):1821–6. https://doi.org/10.1021/acs.nanolett.8b04875

[35]

Zheng B, Su L, Pan H, Hou B, Zhang Y, Zhou F, et al. NIR‐remote selected activation gene expression in living cells by upconverting microrods. Adv Mater. 2016;28(4):707–14. https://doi.org/10.1002/adma.201503961

[36]

Tang L, Yang Z, Zhou Z, Ma Y, Kiesewetter DO, Wang Z, et al. A logic‐gated modular nanovesicle enables programmable drug release for on‐demand chemotherapy. Theranostics. 2019;9(5):1358–68. https://doi.org/10.7150/thno.32106

[37]

Lin LS, Yang X, Zhou Z, Jacobson O, Liu Y, et al. Yolk‐shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic‐plasmonic hybrid theranostic platform. Adv Mater. 2017;29(21):1606681. https://doi.org/10.1002/adma.201606681

[38]

Kolemen S, Ozdemir T, Lee D, Kim GM, Karatas T, Yoon J, et al. Remote‐controlled release of singlet oxygen by the plasmonic heating of endoperoxide‐modified gold nanorods: towards a paradigm change in photodynamic therapy. Angew Chem Int Ed. 2016;55(11):3606–10. https://doi.org/10.1002/anie.201510064

[39]

Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, et al. Thermo‐triggered release of CRISPR‐Cas9 system by lipid‐encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed. 2018;57(6):1491–6. https://doi.org/10.1002/anie.201708689

[40]

Pei P, Sun C, Tao W, Li J, Yang X, Wang J. ROS‐sensitive thioketal‐linked polyphosphoester‐doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials. 2019;188:74–82. https://doi.org/10.1016/j.biomaterials.2018.10.010

[41]

Chen J, Liu L, Motevalli SM, Wu X, Yang XH, Li X, et al. Light‐triggered retention and cascaded therapy of albumin‐based theranostic nanomedicines to alleviate tumor adaptive treatment tolerance. Adv Funct Mater. 2018;28(17):1707291. https://doi.org/10.1002/adfm.201707291

[42]

Fei Z, Fan Q, Dai H, Zhou X, Xu J, Ma Q, et al. Physiologically triggered injectable red blood cell‐based gel for tumor photoablation and enhanced cancer immunotherapy. Biomaterials. 2021;271:120724. https://doi.org/10.1016/j.biomaterials.2021.120724

[43]

Lv G, Guo W, Zhang W, Zhang T, Li S, Chen S, et al. Near‐infrared emission CuInS/ZnS quantum dots: all‐in‐one theranostic nanomedicines with intrinsic fluorescence/photoacoustic imaging for tumor phototherapy. ACS Nano. 2016;10(10):9637–45. https://doi.org/10.1021/acsnano.6b05419

[44]

Liu H, Lv X, Qian J, Qian Y, Wang X, et al. Graphitic carbon nitride quantum dots embedded in carbon nanosheets for near‐infrared imaging‐guided combined photo‐chemotherapy. ACS Nano. 2020;14(10):13304–15. https://doi.org/10.1021/acsnano.0c05143

[45]

Liu Y, Shu G, Li X, Chen H, Zhang B, Pan H, et al. Human HSP70 promoter‐based Prussian blue nanotheranostics for thermo‐controlled gene therapy and synergistic photothermal ablation. Adv Funct Mater. 2018;28(32):1802026. https://doi.org/10.1002/adfm.201802026

[46]

Huang X, Jain PK, El‐Sayed IH, El‐Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Laser Med Sci. 2008;23(3):217–28. https://doi.org/10.1007/s10103‐007‐0470‐x

[47]

Wan X, Zhong H, Pan W, Li Y, Chen Y, et al. Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO(3) mineralized metal‐organic framework. Angew Chem Int Ed. 2019;58(40):14134–9. https://doi.org/10.1002/anie.201907388

[48]

Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH, et al. Emerging applications of nanotechnology in healthcare systems: grand challenges and perspectives. Pharmaceuticals. 2021;14(8):707. https://doi.org/10.3390/ph14080707

[49]

Katz JS, Burdick JA. Light‐responsive biomaterials: development and applications, Macromol. Bioscience. 2010;10(4):339–48. https://doi.org/10.1002/mabi.200900297

[50]

Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, et al. Gold nanocages as photothermal transducers for cancer treatment. Small. 2010;6(7):811–17. https://doi.org/10.1002/smll.200902216

[51]
Nanotechnology: an evidence‐based analysis. Ont Health Technol Assess Ser. Avaliable from: https://pubmed.ncbi.nlm.nih.gov/23074489/. Accessed 1 Apr 2023.
[52]

Nagesha D, Laevsky GS, Lampton P, et al. In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles. Int J Nanomed. 2007;2(4):813–19.

[53]

Young JK, Figueroa ER, Drezek RA. Tunable nanostructures as photothermal theranostic agents. Ann Biomed Eng. 2012;40(2):438–59. https://doi.org/10.1007/s10439‐011‐0472‐5

[54]

Day ES, Bickford LR, Slater JH, et al. Antibody‐conjugated gold‐gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomed. 2010;5:445–54. https://doi.org/10.2147/ijn.s10881

[55]

Choi WI, Kim JY, Kang C, Byeon CC, Tae G. Tumor regression in vivo by photothermal therapy based on gold‐nanorod‐loaded, functional nanocarriers. ACS Nano. 2003;5(3):1995–2003. https://doi.org/10.1021/nn103047r

[56]

Kuo WS, Chang CN, Chang YT, Yang MH, Chien YH, Chen SJ, et al. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near‐infrared optical imaging. Angew Chem Int Ed Engl. 2010;49(15):2711–15. https://doi.org/10.1002/anie.200906927

[57]

Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res. 2008;41(12):1587–95. https://doi.org/10.1021/ar800018v

[58]

Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, et al. Gold nanocages covered by smart polymers for controlled release with near‐infrared light. Nat Mater. 2009;8(12):935–9. https://doi.org/10.1038/nmat2564

[59]

Chen Y, Gryshuk A, Achilefu S, Ohulchansky T, Potter W, Zhong T, et al. A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy. Bioconjugate Chem. 2005;16(5):1264–74. https://doi.org/10.1021/bc050177o

[60]

DO L, Lukianova E, Oraevsky AA. Selective laser nano‐thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Laser Surg Med. 2006;38(6):631–42. https://doi.org/10.1002/lsm.20359

[61]
[62]

Lukianova‐Hleb EY, AO O, Samaniego AP, Shenefelt DL, Wagner DS, Hafner JH, et al. Tunable plasmonic nanoprobes for theranostics of prostate cancer. Theranostics. 2011;1:3–17. https://doi.org/10.7150/thno/v01p0003

[63]

Wagner DS, Delk NA, Lukianova‐Hleb EY, Hafner JH, Farach‐Carson MC, Lapotko DO. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials. 2010;31(29):7567–74. https://doi.org/10.1016/j.biomaterials.2010.06.031

[64]

Lukianova‐Hleb EY, Mutonga MBG, DO L. Cell‐specific multifunctional processing of heterogeneous cell systems in a single laser pulse treatment. ACS Nano. 2012;6(12):10973–81. https://doi.org/10.1021/nn3045243

[65]

Huang X, El‐Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1(1):13–28. https://doi.org/10.1016/j.jare.2010.02.002

[66]

Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J, Hatcher HC, et al. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res. 2010;70(23):9855–64. https://doi.org/10.1158/0008‐5472.CAN‐10‐0250

[67]

Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, et al. Ultrasmall reduced graphene oxide with high near‐infrared absorbance for photothermal therapy. J Am Chem Soc. 2011;133(17):6825–31. https://doi.org/10.1021/ja2010175

[68]

Ghosh S, Bachilo SM, Simonette RA, Beckingham KM, Weisman RB. Oxygen doping modifies near‐infrared band gaps in fluorescent single‐walled carbon nanotubes. Science. 2010;330(6011):1656–9. https://doi.org/10.1126/science.1196382

[69]

Hong C, Kang J, Lee J, Zheng H, Hong S, Lee D, et al. Photothermal therapy using TiO2 nanotubes in combination with near‐infrared laser. J Cancer Ther. 2010;1(2):52–8. https://doi.org/10.4236/jct.2010.12009

[70]

Rossella F, Soldano C, Bellani V, Tommasini M. Metal‐filled carbon nanotubes as a novel class of photothermal nanomaterials. Adv Mater. 2012;24(18):2453–8. https://doi.org/10.1002/adma.201104393

[71]

Zhang L, Zhen SJ, Sang Y, Li JY, Wang Y, et al. Controllable preparation of metal nanoparticle/carbon nanotube hybrids as efficient dark field light scattering agents for cell imaging. Chem Commun. 2010;46(24):4303–5. https://doi.org/10.1039/c0cc00231c

[72]

Montanari J, Maidana C, Esteva MI, Salomon C, Morilla MJ, Romero EL. Sunlight triggered photodynamic ultradeformable liposomes against Leishmania braziliensis are also leishmanicidal in the dark. J Contr Release. 2010;147(3):368–76. https://doi.org/10.1016/j.jconrel.2010.08.014

[73]

Shen R, Mu B, Du P, Liu P. Preparation of photo‐sensitive degradable polymeric nanocapsules from dendrimer grafted nano‐silica templates. Soft Mater. 2011;9(4):382–92. https://doi.org/10.1080/1539445x.2010.525181

[74]

Zhou K, Wang Y, Huang X, Luby‐Phelps K, Sumer BD, Gao J. Tunable, ultrasensitive pH‐responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed. 2011;50(27):6109–14. https://doi.org/10.1002/anie.201100884

[75]

Qian X, Peng XH, Ansari DO, Yin‐Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface‐enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26(1):83–90. https://doi.org/10.1038/nbt1377

[76]

Bae BC, Na K. Development of polymeric cargo for delivery of photosensitizer in photodynamic therapy. Int J Photoenergy. 2012;2012:431975–2014. https://doi.org/10.1155/2012/431975

[77]

Umeyama T, Kawabata K, Tezuka N, Matano Y, Miyato Y, Matsushige K, et al. Dispersion of carbon nanotubes by photo‐ and thermal‐responsive polymers containing azobenzene unit in the backbone. Chem Commun. 2010;46(32):5969–71. https://doi.org/10.1039/c0cc00709a

[78]

Bae BC, Na K. Self‐quenching polysaccharide‐based nanogels of pullulan/folate‐photosensitizer conjugates for photodynamic therapy. Biomaterials. 2010;31(24):6325–35. https://doi.org/10.1016/j.biomaterials.2010.04.030

[79]

Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater. 2011;10(4):324–32. https://doi.org/10.1038/nmat2986

[80]

Umeda Y, Kojima C, Harada A, Horinaka H, Kono K. PEG‐attached PAMAM dendrimers encapsulating gold nanoparticles: growing gold nanoparticles in the dendrimers for improvement of their photothermal properties. Bioconjugate Chem. 2010;21(8):1559–64. https://doi.org/10.1021/bc1001399

[81]

Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011;11(6):2560–6. https://doi.org/10.1021/nl201400z

[82]

Moleavin I, Ibanescu C, Hodorog‐Rusu A, Peptu E, Doroftei F, Hurduc N. Amphiphilic azopolymers capable to generate photo‐sensitive micelles. Cent Eur J Chem. 2011;9(6):1117–25. https://doi.org/10.2478/s11532‐011‐0102‐y

[83]

Ren K, Purdue PE, Burton L, Quan L, Fehringer EV, Thiele GM, et al. Early detection and treatment of wear particle‐induced inflammation and bone loss in a mouse calvarial osteolysis model using HPMA copolymer conjugates. Mol Pharm. 2011;8(4):1043–51. https://doi.org/10.1021/mp2000555

[84]

Bogart LK, Taylor A, Cesbron Y, Murray P, Lévy R. Photothermal microscopy of the core of dextran‐coated iron oxide nanoparticles during cell uptake. ACS Nano. 2012;6(7):5961–71. https://doi.org/10.1021/nn300868z

[85]

Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, et al. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials. 2012;33(7):2215–22. https://doi.org/10.1016/j.biomaterials.2011.11.069

[86]

Shim MS, Kwon YJ. Stimuli‐responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev. 2012;64(11):1046–59. https://doi.org/10.1016/j.addr.2012.01.018

[87]

Winnik FM, Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res. 2013;46(3):672–80. https://doi.org/10.1021/ar3000585

[88]

Qian W, Murakami M, Ichikawa Y, et al. Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. J Phys Chem C. 2011;115(47):23293–8. https://doi.org/10.1021/jp2079567

[89]

Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009;5(1):126–34. https://doi.org/10.1002/smll.200800003

[90]

Agrawal A, Connors M, Beylin A, Liang CP, Barton D, Chen Y, et al. Characterizing the point spread function of retinal OCT devices with a model eye‐based phantom. Biomed Opt Express. 2012;3(5):1116–26. https://doi.org/10.1364/BOE.3.0011163

[91]

Lu ZR. Molecular imaging of HPMA copolymers: visualizing drug delivery in cell, mouse and man. Adv Drug Deliv Rev. 2010;62(2):246–57. https://doi.org/10.1016/j.addr.2009.12.007

[92]

Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, et al. Emerging applications of stimuli‐responsive polymer materials. Nat Mater. 2010;9(2):101–13. https://doi.org/10.1038/nmat2614

[93]

Ding H, Yu H, Dong Y, Tian R, Huang G, Boothman DA, et al. Photoactivation switch from type Ⅱ to type Ⅰ reactions by electron‐rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J Contr Release. 2011;156(3):276–80. https://doi.org/10.1016/j.jconrel.2011.08.019

[94]

Cheng FY, Su CH, Wu PC, Yeh CS. Multifunctional polymeric nanoparticles for combined chemotherapeutic and near‐infrared photothermal cancer therapy in vitro and in vivo. Chem Commun. 2010;46(18):3167–9. https://doi.org/10.1039/b919172k

[95]

Park W, Cho S, Han J, Shin H, Na K, Lee B, et al. Advanced smart‐photosensitizers for more effective cancer treatment. Biomater Sci. 2017;6(1):79–90. https://doi.org/10.1039/c7bm00872d

[96]

van Furth R, Cohn ZA, Hirsch JG, et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972;46(6):845–52.

[97]

Maghsoudnia N, Eftekhari RB, Sohi AN, Norouzi P, Akbari H, Ghahremani MH, et al. Mitochondrial delivery of microRNA mimic let‐7b to NSCLC cells by PAMAM‐based nanoparticles. J Drug Target. 2020;28(7–8):818–30. https://doi.org/10.1080/1061186X.2020.1774594

[98]

Roy B, Ghose S, Biswas S. Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma. Semin Cell Dev Biol. 2022;124:134–44. https://doi.org/10.1016/j.semcdb.2021.04.006

[99]

Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436(7050):568–72. https://doi.org/10.1038/nature03794

[100]

Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441–54. https://doi.org/10.1093/jnci/djm135

[101]

Gkretsi V, Stylianou A, Papageorgis P, Polydorou C, Stylianopoulos T. Remodeling components of the tumor microenvironment to enhance cancer therapy. Front Oncol. 2015;5:214. https://doi.org/10.3389/fonc.2015.00214

[102]

Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015;25(4):198–213. https://doi.org/10.1016/j.tcb.2014.11.006

[103]

Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, et al. Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis. 2017;38(8):766–80. https://doi.org/10.1093/carcin/bgx063

[104]

Hingorani SR, Harris WP, Beck JT, Berdov BA, Wagner SA, Pshevlotsky EM, et al. Phase ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res. 2016;22(12):2848–54. https://doi.org/10.1158/1078‐0432.CCR‐15‐2010

[105]

Chen E, Han S, Song B, Xu L, Yuan H, Liang M, et al. Mechanism investigation of hyaluronidase‐combined multistage nanoparticles for solid tumor penetration and antitumor effect. Int J Nanomed. 2020;15:6311–24. https://doi.org/10.2147/IJN.S257164

[106]

Bu J, Nair A, Iida M, Jeong W, Poellmann MJ, Mudd K, et al. An avidity‐based PD‐L1 antagonist using nanoparticle‐antibody conjugates for enhanced immunotherapy. Nano Lett. 2020;20(7):4901–9. https://doi.org/10.1021/acs.nanolett.0c00953

[107]

Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T‐cell infiltration. Theranostics. 2021;11(11):5365–86. https://doi.org/10.7150/thno.58390

[108]

Yan S, Luo Z, Li Z, Wang Y, Tao J, Gong C, et al. Improving cancer immunotherapy outcomes using biomaterials. Angew Chem Int Ed. 2020;59(40):17332–43. https://doi.org/10.1002/anie.202002780

[109]

Sanaei MJ, Pourbagheri‐Sigaroodi A, Kaveh V, Sheikholeslami SA, Salari S, Bashash D. The application of nano‐medicine to overcome the challenges related to immune checkpoint blockades in cancer immunotherapy: recent advances and opportunities. Crit Rev Oncol Hematol. 2021;157:103160. https://doi.org/10.1016/j.critrevonc.2020.103160

[110]

Rios‐Doria J, Durham N, Wetzel L, Rothstein R, Chesebrough J, Holoweckyj N, et al. Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models. Neoplasia. 2015;17(8):661–70. https://doi.org/10.1016/j.neo.2015.08.004

[111]

Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, et al. Restoring anti‐tumor functions of T cells via nanoparticle‐mediated immune checkpoint modulation. J Contr Release. 2016;231:17–28. https://doi.org/10.1016/j.jconrel.2016.01.044

[112]

Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, et al. Combination immunotherapy of MUC1 mRNA nano‐vaccine and CTLA‐4 blockade effectively inhibits growth of triple negative breast cancer. Mol Ther. 2018;26(1):45–55. https://doi.org/10.1016/j.ymthe.2017.10.020

[113]

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/s0092‐8674(00)81683‐9

[114]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013

[115]

Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, et al. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano. 2018;12(1):24–43. https://doi.org/10.1021/acsnano.7b05108

[116]

Yona S, Gordon S. From the reticuloendothelial to mononuclear phagocyte system ‐ the unaccounted years. Front Immunol. 2015;6:328. https://doi.org/10.3389/fimmu.2015.00328

[117]

Hume DA, Irvine KM, Pridans C. The mononuclear phagocyte system: the relationship between monocytes and macrophages. Trends Immunol. 2019;40(2):98–112. https://doi.org/10.1016/j.it.2018.11.007

[118]

Liang T, Zhang R, Liu X, Ding Q, Wu S, Li C, et al. Recent advances in macrophage‐mediated drug delivery systems. Int J Nanomed. 2021;16:2703–14. https://doi.org/10.2147/ijn.s298159

[119]

von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BY. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol. 2017;35(2):159–71. https://doi.org/10.1016/j.tibtech.2016.07.006

[120]

Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53(9):R61–R109. https://doi.org/10.1088/0031‐9155/53/9/R01

[121]

Jeong H, Huh M, Lee SJ, Koo H, Kwon IC, Jeong SY, et al. Photosensitizer‐conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics. 2011;1:230–9. https://doi.org/10.7150/thno/v01p0230

[122]

Moon HK, Son M, Park JE, Yoon SM, Lee SH, Choi HC. Significant increase in the water dispersibility of zinc phthalocyanine nanowires and applications in cancer phototherapy. NPG Asia Mater. 2012;4(4):e12. https://doi.org/10.1038/am.2012.22

[123]

Rukavina Z, Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8(2):18. https://doi.org/10.3390/pharmaceutics8020018

[124]

Chu B, Qu Y, He X, Hao Y, Yang C, Yang Y, et al. ROS‐responsive camptothecin prodrug nanoparticles for on‐demand drug release and combination of chemotherapy and photodynamic therapy. Adv Funct Mater. 2020;30(52):2005918. https://doi.org/10.1002/adfm.202005918

[125]

Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008;60(11):1226–40. https://doi.org/10.1016/j.addr.2008.03.015

[126]

Lin KY, Bagley AF, Zhang AY, Karl DL, Yoon SS, Bhatia SN. Gold nanorod photothermal therapy in a genetically engineered mouse model of soft tissue sarcoma. Nano LIFE. 2010;1(3n04):277–87. https://doi.org/10.1142/s1793984410000262

[127]

Zheng X, Zhou F, Wu B, Chen WR, Xing D. Enhanced tumor treatment using biofunctional indocyanine green‐containing nanostructure by intratumoral or intravenous injection. Mol Pharm. 2012;9(3):514–22. https://doi.org/10.1021/mp200526m

[128]

Patel RH, Wadajkar AS, Patel NL, Kavuri VC, Nguyen KT, Liu H. Multifunctionality of indocyanine green‐loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J Biomed Opt. 2012;17(4):046003. https://doi.org/10.1117/1.JBO.17.4.046003

[129]

Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS, et al. Gold nanomaterials conjugated with indocyanine green for dual‐modality photodynamic and photothermal therapy. Biomaterials. 2012;33(11):3270–8. https://doi.org/10.1016/j.biomaterials.2012.01.035

[130]

Ni W, Kou X, Yang Z, Wang J. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano. 2008;2(4):677–86. https://doi.org/10.1021/nn7003603

[131]

Terentyuk GS, Maslyakova GN, Lv S, Khlebtsov NG, Khlebtsov BN, Akchurin GG, et al. Laser‐induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt. 2009;14(2):021016. https://doi.org/10.1117/1.3122371

[132]

Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near‐infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007;7(7):1929–34. https://doi.org/10.1021/nl070610y

[133]

Conde J, Doria G, Baptista P, et al. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012;2012:751075–112. https://doi.org/10.1155/2012/751075

[134]

Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):e10143. https://doi.org/10.1002/btm2.10143

[135]

Terentyuk GS, Maslyakova GN, Lv S, Khlebtsov BN, Kogan BY, Akchurin GG, et al. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. J Biophot. 2009;2(5):292–302. https://doi.org/10.1002/jbio.200910005

[136]

Matsushita‐Ishiodori Y, Ohtsuki T. Photoinduced RNA interference. Acc Chem Res. 2012;45(7):1039–47. https://doi.org/10.1021/ar200227n

[137]

EndohT OT. Cellular siRNA delivery using TatU1A and photo‐induced RNA interference. Methods Mol Biol. 2010;623:271–81. https://doi.org/10.1007/978‐1‐60761‐588‐0_17

[138]

Khlebtsov B, Panfilova E, Khanadeev V, Bibikova O, Terentyuk G, Ivanov A, et al. Nanocomposites containing silica‐coated gold‐silver nanocages and Yb‐2, 4‐dimethoxyhematoporphyrin: multifunctional capability of IR‐luminescence detection, photosensitization, and photothermolysis. ACS Nano. 2011;5(9):7077–89. https://doi.org/10.1021/nn2017974

[139]

Galanzha EI, Kim JW, Zharov VP. Nanotechnology‐based molecular photoacoustic and photothermal flow cytometry platform for in‐vivo detection and killing of circulating cancer stem cells. J Biophot. 2009;2(12):725–35. https://doi.org/10.1002/jbio.200910078

[140]

Singh AK, Hahn MA, Gutwein LG, et al. Multi‐dye theranostic nanoparticle platform for bioimaging and cancer therapy. Int J Nanomed. 2012;7:2739–50. https://doi.org/10.2147/IJN.S28357

[141]

Lee CM, Jeong HJ, Kim EM, Kim DW, Lim ST, et al. Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn Reson Med. 2009;62(6):1440–6. https://doi.org/10.1002/mrm.22123

[142]

Lee SM, Park H, Yoo KH. Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv Mater. 2010;22(36):4049–53. https://doi.org/10.1002/adma.201001040

[143]

Wu W, Shen J, Banerjee P, Zhou S. Core‐shell hybrid nanogels for integration of optical temperature‐sensing, targeted tumor cell imaging, and combined chemo‐photothermal treatment. Biomaterials. 2010;31(29):7555–66. https://doi.org/10.1016/j.biomaterials.2010.06.030

[144]

Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, et al. Folic acid‐conjugated silica‐modified gold nanorods for X‐ray/CT imaging‐guided dual‐mode radiation and photo‐thermal therapy. Biomaterials. 2011;32(36):9796–809. https://doi.org/10.1016/j.biomaterials.2011.08.086

[145]

Rossin R, Pan D, Qi K, et al. 64Cu‐labeled folate‐conjugated shell cross‐linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med. 2005;46(7):1210–18.

[146]

Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef‐Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol. 2010;55(11):3045–59. https://doi.org/10.1088/0031‐9155/55/11/004

[147]

Bagalkot V, Zhang L, Levy‐Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot‐aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi‐fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70. https://doi.org/10.1021/nl071546n

[148]

Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76. https://doi.org/10.1038/nbt994

[149]

Cheng SH, Lee CH, Chen MC, Souris JS, Tseng FG, Yang CS, et al. Tri‐functionalization of mesoporous silicananoparticles for comprehensive cancer theranostics—the trio of imaging, targeting and therapy. J Mater Chem. 2010;20(29):6149–57. https://doi.org/10.1039/C0JM00645A

[150]

McCarthy JR, Korngold E, Weissleder R, Jaffer FA. A light‐activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small. 2010;6(18):2041–9. https://doi.org/10.1002/smll.201000596

[151]

Lim YT, Cho MY, Choi BS, Noh YW, Chung BH. Diagnosis and therapy of macrophage cells using dextran‐coated near‐infrared responsive hollow‐type gold nanoparticles. Nanotechnology. 2008;19(37):375105. https://doi.org/10.1088/0957‐4484/19/37/375105

[152]

Reinert M, Bregy A, Kohler A, Steitz B, Petri‐Fink A, Bogni S, et al. Electromagnetic tissue fusion using superparamagnetic iron oxide nanoparticles: first experience with rabbit aorta. Open Surg J. 2008;2(1):3–9. https://doi.org/10.2174/1874300500802010003

[153]

Huang WC, Tsai PJ, Chen YC. Multifunctional Fe3O4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic‐resistant bacteria. Small. 2009;5(1):51–6. https://doi.org/10.1002/smll.200801042

[154]

Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J. 2006;90(2):619–27. https://doi.org/10.1529/biophysj.105.061895

[155]

Matteini P, Ratto F, Rossi F, de Angelis M, Cavigli L, Pini R. Hybrid nanocomposite films for laser‐activated tissue bonding. J Biophot. 2012;5(11–12):868–77. https://doi.org/10.1002/jbio.201200115

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 April 2023
Accepted: 14 June 2023
Published: 23 September 2023
Issue date: September 2023

Copyright

© 2023 The Authors. Tsinghua University Press.

Acknowledgements

ACKNOWLEDGMENTS

None.

Rights and permissions

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return