Graphical Abstract
![](https://wqketang.oss-cn-beijing.aliyuncs.com/zip-unzip/zip-251f3410-a2e3-46fb-b1a7-d2f8d1e8132d/med-1-3-173/files/med-1-3-173-FE1.jpg?Expires=1737802972&OSSAccessKeyId=STS.NURU9XRNLXHq6Y2GNQ2Ptdn28&Signature=RhJL0%2BMuAU6uQWgl1iSXeE%2F5xSE%3D&security-token=CAISywJ1q6Ft5B2yfSjIr5bnHoPsv5Ft74qaNH%2BDo04EPt9Yi6uZ2jz2IHtKenhsBOsbtfk1mG5W5%2FgZlqJ9SptIAEfJa9d99MzYNsA1wtCT1fau5Jko1beHewHKeTOZsebWZ%2BLmNqC%2FHt6md1HDkAJq3LL%2Bbk%2FMdle5MJqP%2B%2FUFB5ZtKWveVzddA8pMLQZPsdITMWCrVcygKRn3mGHdfiEK00he8TouufTinpHMskGA1Aell7Mvyt6vcsT%2BXa5FJ4xiVtq55utye5fa3TRYgxowr%2Fwo0v0YpGya5YzHXwcPskvdKZbo78UqLQlla6w%2BGqFJqvPxr%2Fp8t%2Fx5fWJKAezhVgs8cVM8JOjIqKOscIsiJsCowy0AFV55c8Fdm%2BgUooJVgIMhTnduUfAPJAGOxzJitP%2BUVGGphr60TEnBL4rB5MUctfzRp8k7tFPUTzDnGoABkprTZMrQM7X8zQzyLaMIilcKTTfzOg0vovxm7fTQhWnkDsJrBtJS2QsbrLvwM%2B%2B5Iz9T%2FfhG6XmACEU%2BeOE84KBrv6aY8s%2B8yjH1%2B3eP5SfM17tM1ZfAN0Vr0gEbkziFVkDuXABLWuV9f7kB2ugHaMsxhqwfmic5mWMBCWYCXv8gAA%3D%3D)
Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Crosstalk between tumors and the nervous system has emerged as a significant hallmark of human cancer. In the central nervous system, neurons closely interact with tumor cells, promoting the proliferation of glioma and neuroblastoma. Additionally, the peripheral nervous system plays a crucial role in reshaping the tumor microenvironment, modulating angiogenesis, and regulating immune cell function, while also directly promoting tumorigenesis and metastasis. Current research has elucidated some of the specific neural signaling mechanisms involved in this crosstalk, including neurotransmitters, neuropeptides, and growth factors. In this review, we aim to summarize these mechanisms and highlight the latest discoveries in various solid tumors, such as glioma, pancreatic, prostate, and gastrointestinal cancers. By understanding the intricate crosstalk between cancer cells and the nervous system, we can develop more effective and targeted treatments for cancer patients.
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013
Senga SS, Grose RP. Hallmarks of cancer‐the new testament. Open Biol. 2021;11(1):200358. https://doi.org/10.1098/rsob.200358
Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5(1):166. https://doi.org/10.1038/s41392-020-00280-x
Magnon C, Hondermarck H. The neural addiction of cancer. Nat Rev Cancer. 2023;23(5):317–34. https://doi.org/10.1038/s41568-023-00556-8
Monje M, Borniger JC, D'Silva NJ, Deneen B, Dirks PB, Fattahi F, et al. Roadmap for the emerging field of cancer neuroscience. Cell. 2020;181(2):219–22. https://doi.org/10.1016/j.cell.2020.03.034
Wang W, Li L, Chen N, Niu C, Li Z, Hu J, et al. Nerves in the tumor microenvironment: origin and effects. Front Cell Dev Biol. 2020;8:601738. https://doi.org/10.3389/fcell.2020.601738
Zahalka AH, Frenette PS. Nerves in cancer. Nat Rev Cancer. 2020;20(3):143–57. https://doi.org/10.1038/s41568-019-0237-2
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, et al. Cancer neuroscience: state of the field, emerging directions. Cell. 2023;186(8):1689–707. https://doi.org/10.1016/j.cell.2023.02.002
Lei Y, Tang L, Xie Y, Xianyu Y, Zhang L, Wang P, et al. Gold nanoclusters‐assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat Commun. 2017;8(1):15130. https://doi.org/10.1038/ncomms15130
Demir IE, Friess H, Ceyhan GO. Nerve‐cancer interactions in the stromal biology of pancreatic cancer. Front Physiol. 2012;3:97. https://doi.org/10.3389/fphys.2012.00097
Deshmukh SD, Willmann JK, Jeffrey RB. Pathways of extrapancreatic perineural invasion by pancreatic adenocarcinoma: evaluation with 3D volume‐rendered MDCT imaging. AJR Am J Roentgenol. 2010;194(3):668–74. https://doi.org/10.2214/AJR.09.3285
Bapat AA, Hostetter G, Von Hoff DD, Han H. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 2011;11(10):695–707. https://doi.org/10.1038/nrc3131
Bilici A, Seker M, Ustaalioglu BB, Kefeli U, Yildirim E, Yavuzer D, et al. Prognostic significance of perineural invasion in patients with gastric cancer who underwent curative resection. Ann Surg Oncol. 2010;17(8):2037–44. https://doi.org/10.1245/s10434-010-1027-y
Hwang JE, Hong JY, Kim JE, Shim HJ, Bae WK, Hwang EC, et al. Prognostic significance of the concomitant existence of lymphovascular and perineural invasion in locally advanced gastric cancer patients who underwent curative gastrectomy and adjuvant chemotherapy. Jpn J Clin Oncol. 2015;45(6):541–6. https://doi.org/10.1093/jjco/hyv031
Deng J, You Q, Gao Y, Yu Q, Zhao P, Zheng Y, et al. Prognostic value of perineural invasion in gastric cancer: a systematic review and meta‐analysis. PLoS One. 2014;9(2):e88907. https://doi.org/10.1371/journal.pone.0088907
Espana‐Ferrufino A, Lino‐Silva LS, Salcedo‐Hernandez RA. Extramural perineural invasion in pT3 and pT4 gastric carcinomas. J Pathol Transl Med. 2018;52(2):79–84. https://doi.org/10.4132/jptm.2017.11.01
Maruyama S, Kawaida H, Hosomura N, Amemiya H, Saito R, Shimizu H, et al. Indications for extrahepatic bile duct resection due to perineural invasion in patients with gallbladder cancer. World J Surg Oncol. 2019;17(1):200. https://doi.org/10.1186/s12957-019-1735-0
Feo CF, Cossu ML, Ginesu GC, Ginesu GC, Fancellu A, Scanu AM, et al. Perineural infiltration as a prognostic factor in surgically treated gallbladder cancer A single center experience and literature review. Ann Ital Chir. 2017;88:485–90. https://www.ncbi.nlm.nih.gov/pubmed/29339591
Oven Ustaalioglu BB, Bilici A, Seker M, Kefeli U, Aydin D, Celik S, et al. Prognostic factors for operated gallbladder cancer. J Gastrointest Cancer. 2019;50(3):451–7. https://doi.org/10.1007/s12029-018-0099-y
Schmitd LB, Scanlon CS, D'Silva NJ. Perineural invasion in head and neck cancer. J Dent Res. 2018;97(7):742–50. https://doi.org/10.1177/0022034518756297
Panizza B, Warren T. Perineural invasion of head and neck skin cancer: diagnostic and therapeutic implications. Curr Oncol Rep. 2013;15(2):128–33. https://doi.org/10.1007/s11912-012-0288-y
Zanoni DK, Montero PH, Migliacci JC, Shah JP, Wong RJ, Ganly I, et al. Survival outcomes after treatment of cancer of the oral cavity (1985‐2015). Oral Oncol. 2019;90:115–21. https://doi.org/10.1016/j.oraloncology.2019.02.001
Hosoya K, Wakahara M, Ikeda K, Umekita Y. Perineural invasion predicts unfavorable prognosis in patients with invasive breast cancer. Cancer Diagn Progn. 2023;3(2):208–14. https://doi.org/10.21873/cdp.10203
Hu J, Chen W, Shen L, Chen Z, Huang J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer. 2022;1877(6):188828. https://doi.org/10.1016/j.bbcan.2022.188828
Zhu Y, Zhang G, Yang Y, Cui L, Jia S, Shi Y, et al. Perineural invasion in early‐stage cervical cancer and its relevance following surgery. Oncol Lett. 2018;15(5):6555–61. https://doi.org/10.3892/ol.2018.8116
Memarzadeh S, Natarajan S, Dandade DP, Ostrzega N, Saber PA, Busuttil A, et al. Lymphovascular and perineural invasion in the parametria: a prognostic factor for early‐stage cervical cancer. Obstet Gynecol. 2003;102(3):612–9. https://doi.org/10.1016/s0029-7844(03)00569-6
Cho HC, Kim H, Cho HY, Kim K, No JH, Kim YB. Prognostic significance of perineural invasion in cervical cancer. Int J Gynecol Pathol. 2013;32(2):228–33. https://doi.org/10.1097/PGP.0b013e318257df5f
Cui L, Shi Y, Zhang GN. Perineural invasion as a prognostic factor for cervical cancer: a systematic review and meta‐analysis. Arch Gynecol Obstet. 2015;292(1):13–9. https://doi.org/10.1007/s00404-015-3627-z
Ozaki H, Hiraoka T, Mizumoto R, Matsuno S, Matsumoto Y, Nakayama T, et al. The prognostic significance of lymph node metastasis and intrapancreatic perineural invasion in pancreatic cancer after curative resection. Surg Today. 1999;29(1):16–22. https://doi.org/10.1007/BF02482964
Beard CJ, Chen MH, Cote K, Loffredo M, Renshaw AA, Hurwitz M, et al. Perineural invasion is associated with increased relapse after external beam radiotherapy for men with low‐risk prostate cancer and may be a marker for occult, high‐grade cancer. Int J Radiat Oncol Biol Phys. 2004;58(1):19–24. https://doi.org/10.1016/s0360-3016(03)01433-0
Duraker N, Sisman S, Can G. The significance of perineural invasion as a prognostic factor in patients with gastric carcinoma. Surg Today. 2003;33(2):95–100. https://doi.org/10.1007/s005950300020
Huang Y, He L, Dong D, Yang C, Liang C, Chen X, et al. Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model. Chin J Cancer Res. 2018;30(1):40–50. https://doi.org/10.21147/j.issn.1000-9604.2018.01.05
Kinugasa T, Mizobe T, Shiraiwa S, Akagi Y, Shirouzu K. Perineural invasion is a prognostic factor and treatment indicator in patients with rectal cancer undergoing curative surgery: 2000‐2011 Data from a single‐center study. Anticancer Res. 2017;37(7):3961–8. https://doi.org/10.21873/anticanres.11780
Zare‐Bandamiri M, Fararouei M, Zohourinia S, Daneshi N, Dianatinasab M. Risk factors predicting colorectal cancer recurrence following initial treatment: a 5‐year cohort study. Asian Pac J Cancer Prev. 2017;18(9):2465–70. https://doi.org/10.22034/APJCP.2017.18.9.2465
Shi DD, Guo JA, Hoffman HI, Su J, Mino‐Kenudson M, Barth JL, et al. Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities. Lancet Oncol. 2022;23(2):e6274. https://doi.org/10.1016/S1470-2045(21)00596-9
Venkataramani V, Tanev DI, Strahle C, Studier‐Fischer A, Fankhauser L, Kessler T, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573(7775):532–8. https://doi.org/10.1038/s41586-019-1564-x
Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775):539–45. https://doi.org/10.1038/s41586-019-1563-y
Zeng Q, Michael IP, Zhang P, Saghafinia S, Knott G, Jiao W, et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature. 2019;573(7775):526–31. https://doi.org/10.1038/s41586-019-1576-6
Robinson HPC, Li L. Autocrine, paracrine and necrotic NMDA receptor signalling in mouse pancreatic neuroendocrine tumour cells. Open Biol. 2017;7(12):170221. https://doi.org/10.1098/rsob.170221
Li L, Zeng Q, Bhutkar A, Galvan JA, Karamitopoulou E, Noordermeer D, et al. GKAP acts as a genetic modulator of NMDAR signaling to govern invasive tumor growth. Cancer Cell. 2018;33(4):736–51.e5. https://doi.org/10.1016/j.ccell.2018.02.011
Li L, Hanahan D. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell. 2013;153(1):86–100. https://doi.org/10.1016/j.cell.2013.02.051
Schmitt A, Sakthivelu V, Ndoci K, Wani GA, Touet M, Pintelon I, et al. Functional synapses between small cell lung cancer and glutamatergic neurons. bioRxiv. 2023. https://doi.org/10.1101/2023.01.19.524045
Gibbons CH. Basics of autonomic nervous system function. Handb Clin Neurol. 2019;160:407–18. https://doi.org/10.1016/B978-0-444-64032-1.00027-8
Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70(18):7042–52. https://doi.org/10.1158/0008-5472.CAN-10-0522
Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):1236361. https://doi.org/10.1126/science.1236361
Allen JK, Armaiz‐Pena GN, Nagaraja AS, Sadaoui NC, Ortiz T, Dood R, et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 2018;78(12):3233–42. https://doi.org/10.1158/0008-5472.CAN-16-1701
Zahalka AH, Arnal‐Estape A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS, et al. Adrenergic nerves activate an angio‐metabolic switch in prostate cancer. Science. 2017;358(6361):321–6. https://doi.org/10.1126/science.aah5072
Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, et al. β2 adrenergic‐neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;33(1):75–90.e7. https://doi.org/10.1016/j.ccell.2017.11.007
Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014;6(250):250ra115. https://doi.org/10.1126/scitranslmed.3009569
Partecke LI, Kading A, Trung DN, Diedrich S, Sendler M, Weiss F, et al. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFalpha in a murine pancreatic cancer model. Oncotarget. 2017;8(14):22501–12. https://doi.org/10.18632/oncotarget.15019
Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z, Macchini M, et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 2018;8(11):1458–73. https://doi.org/10.1158/2159-8290.CD-18-0046
Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM, et al. Cancer‐related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res. 2008;14(23):7593–603. https://doi.org/10.1158/1078-0432.CCR-08-1164
Banh RS, Biancur DE, Yamamoto K, Sohn ASW, Walters B, Kuljanin M, et al. Neurons release serine to support mRNA translation in pancreatic cancer. Cell. 2020;183(5):1202–18.e25. https://doi.org/10.1016/j.cell.2020.10.016
Han H, Yang C, Zhang Y, Han C, Zhang G. Vascular endothelial growth factor mediates the sprouted axonogenesis of breast cancer in rat. Am J Pathol. 2021;191(3):515–26. https://doi.org/10.1016/j.ajpath.2020.12.006
Pundavela J, Demont Y, Jobling P, Lincz LF, Roselli S, Thorne RF, et al. ProNGF correlates with Gleason score and is a potential driver of nerve infiltration in prostate cancer. Am J Pathol. 2014;184(12):3156–62. https://doi.org/10.1016/j.ajpath.2014.08.009
Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N, et al. Brain‐derived neurotrophic factor and neurotrophin‐4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res. 2011;17(7):1741–52. https://doi.org/10.1158/1078-0432.CCR-10-1890
Zeng Q, Cheng Y, Zhu Q, Yu Z, Wu X, Huang K, et al. The relationship between overexpression of glial cell‐derived neurotrophic factor and its RET receptor with progression and prognosis of human pancreatic cancer. J Int Med Res. 2008;36(4):656–64. https://doi.org/10.1177/147323000803600406
Gil Z, Cavel O, Kelly K, Brader P, Rein A, Gao SP, et al. Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J Natl Cancer Inst. 2010;102(2):107–18. https://doi.org/10.1093/jnci/djp456
Cavel O, Shomron O, Shabtay A, Vital J, Trejo‐Leider L, Weizman N, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res. 2012;72(22):5733–43. https://doi.org/10.1158/0008-5472.Can-12-0764
Yin K, Wang L, Xia Y, Dang S, Zhang X, He Z, et al. Netrin‐1 promotes cell neural invasion in gastric cancer via its receptor neogenin. J Cancer. 2019;10(14):3197–207. https://doi.org/10.7150/jca.30230
Fitamant J, Guenebeaud C, Coissieux MM, Guix C, Treilleux I, Scoazec JY, et al. Netrin‐1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci U S A. 2008;105(12):4850–5. https://doi.org/10.1073/pnas.0709810105
Mehlen P, Delloye‐Bourgeois C, Chedotal A. Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer. 2011;11(3):188–97. https://doi.org/10.1038/nrc3005
Madeo M, Colbert PL, Vermeer DW, Lucido CT, Cain JT, Vichaya EG, et al. Cancer exosomes induce tumor innervation. Nat Commun. 2018;9(1):4284. https://doi.org/10.1038/s41467-018-06640-0
Li X, Peng X, Yang S, Wei S, Fan Q, Liu J, et al. Targeting tumor innervation: premises, promises, and challenges. Cell Death Dis. 2022;8(1):131. https://doi.org/10.1038/s41420-022-00930-9
Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in cancer: a review of the literature. Cancer. 2009;115(15):3379–91. https://doi.org/10.1002/cncr.24396
Wang J, Chen Y, Li X, Zou X. Perineural invasion and associated pain transmission in pancreatic cancer. Cancers. 2021;13(18):4594. https://doi.org/10.3390/cancers13184594
Bakst RL, Glastonbury CM, Parvathaneni U, Katabi N, Hu KS, Yom SS. Perineural invasion and perineural tumor spread in head and neck cancer. Int J Radiat Oncol Biol Phys. 2019;103(5):1109–24. https://doi.org/10.1016/j.ijrobp.2018.12.009
Marchesi F, Piemonti L, Mantovani A, Allavena P. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 2010;21(1):77–82. https://doi.org/10.1016/j.cytogfr.2009.11.001
Demir IE, Ceyhan GO, Liebl F, D'Haese JG, Maak M, Friess H. Neural invasion in pancreatic cancer: the past, present and future. Cancers. 2010;2(3):1513–27. https://doi.org/10.3390/cancers2031513
Chen SH, Zhang BY, Zhou B, Zhu CZ, Sun LQ, Feng YJ. Perineural invasion of cancer: a complex crosstalk between cells and molecules in the perineural niche. Am J Cancer Res. 2019;9(1):1–21. https://www.ncbi.nlm.nih.gov/pubmed/30755808
Yao J, Li WY, Li SG, Feng XS, Gao SG. Midkine promotes perineural invasion in human pancreatic cancer. World J Gastroenterol. 2014;20(11):3018–24. https://doi.org/10.3748/wjg.v20.i11.3018
Doan C, Aouizerat BE, Ye Y, Dang D, Asam K, Bhattacharya A, et al. Neurotrophin pathway receptors NGFR and TrkA control perineural invasion, metastasis, and pain in oral cancer. Adv Biol (Weinh). 2022;6(9):e2200190. https://doi.org/10.1002/adbi.202200190
Lian EY, Hyndman BD, Moodley S, Maritan SM, Mulligan LM. RET isoforms contribute differentially to invasive processes in pancreatic ductal adenocarcinoma. Oncogene. 2020;39(41):6493–510. https://doi.org/10.1038/s41388-020-01448-z
Saloman JL, Singhi AD, Hartman DJ, Normolle DP, Albers KM, Davis BM. Systemic depletion of nerve growth factor inhibits disease progression in a genetically engineered model of pancreatic ductal adenocarcinoma. Pancreas. 2018;47(7):856–63. https://doi.org/10.1097/MPA.0000000000001090
Jurcak NR, Rucki AA, Muth S, Thompson E, Sharma R, Ding D, et al. Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice. Gastroenterology. 2019;157(3):838–50.e6. https://doi.org/10.1053/j.gastro.2019.05.065
Okada Y, Takeyama H, Sato M, Morikawa M, Sobue K, Asai K, et al. Experimental implication of celiac ganglionotropic invasion of pancreatic‐cancer cells bearing c‐ret proto‐oncogene with reference to glial‐cell‐line‐derived neurotrophic factor (GDNF). Int J Cancer. 1999;81(1):67–73. https://doi.org/10.1002/(sici)1097-0215(19990331)81:1<67::aid-ijc13>3.0.co;2-v
Veit C, Genze F, Menke A, Hoeffert S, Gress TM, Gierschik P, et al. Activation of phosphatidylinositol 3‐kinase and extracellular signal‐regulated kinase is required for glial cell line‐derived neurotrophic factor‐induced migration and invasion of pancreatic carcinoma cells. Cancer Res. 2004;64(15):5291–300. https://doi.org/10.1158/0008-5472.CAN-04-1112
Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, et al. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest. 2016;126(4):1538–54. https://doi.org/10.1172/JCI82658
Swanson BJ, McDermott KM, Singh PK, Eggers JP, Crocker PR, Hollingsworth MA. MUC1 is a counter‐receptor for myelin‐associated glycoprotein (Siglec‐4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion. Cancer Res. 2007;67(21):10222–9. https://doi.org/10.1158/0008-5472.CAN-06-2483
Zhang W, He R, Yang W, Zhang Y, Yuan Q, Wang J, et al. Autophagic Schwann cells promote perineural invasion mediated by the NGF/ATG7 paracrine pathway in pancreatic cancer. J Exp Clin Cancer Res. 2022;41(1):48. https://doi.org/10.1186/s13046-021-02198-w
Roger E, Martel S, Bertrand‐Chapel A, Depollier A, Chuvin N, Pommier RM, et al. Schwann cells support oncogenic potential of pancreatic cancer cells through TGFbeta signaling. Cell Death Dis. 2019;10(12):886. https://doi.org/10.1038/s41419-019-2116-x
Na'ara S, Amit M, Gil Z. L1CAM induces perineural invasion of pancreas cancer cells by upregulation of metalloproteinase expression. Oncogene. 2019;38(4):596–608. https://doi.org/10.1038/s41388-018-0458-y
Thomas D, Radhakrishnan P. Tumor‐stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer. 2019;18(1):14. https://doi.org/10.1186/s12943-018-0927-5
Li J, Kang R, Tang D. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Commun. 2021;41(8):642–60. https://doi.org/10.1002/cac2.12188
Lu R, Fan C, Shangguan W, Liu Y, Li Y, Shang Y, et al. Neurons generated from carcinoma stem cells support cancer progression. Signal Transduct Target Ther. 2017;2(1):16036. https://doi.org/10.1038/sigtrans.2016.36
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, et al. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience. 2022;25(7):104498. https://doi.org/10.1016/j.isci.2022.104498
Brown JP, Couillard‐Despres S, Cooper‐Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol. 2003;467(1):1–10. https://doi.org/10.1002/cne.10874
Couillard‐Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci. 2005;21(1):1–14. https://doi.org/10.1111/j.1460-9568.2004.03813.x
Mauffrey P, Tchitchek N, Barroca V, Bemelmans AP, Firlej V, Allory Y, et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature. 2019;569(7758):672–8. https://doi.org/10.1038/s41586-019-1219-y
Amit M, Takahashi H, Dragomir MP, Lindemann A, Gleber‐Netto FO, Pickering CR, et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature. 2020;578(7795):449–54. https://doi.org/10.1038/s41586-020-1996-3
Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30. sup pp 1‐13. https://doi.org/10.1038/ncb2000
Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz‐Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013‐2017. Neuro Oncol. 2020;22(12 (Suppl 2)):iv1–96. https://doi.org/10.1093/neuonc/noaa200
Radin DP, Tsirka SE. Interactions between tumor cells, neurons, and microglia in the glioma microenvironment. Int J Mol Sci. 2020;21(22):8476. https://doi.org/10.3390/ijms21228476
Lippmann ES, Williams CE, Ruhl DA, Estevez‐Silva MC, Chapman ER, Coon JJ, et al. Deterministic HOX patterning in human pluripotent stem cell‐derived neuroectoderm. Stem Cell Rep. 2015;4(4):632–44. https://doi.org/10.1016/j.stemcr.2015.02.018
Le TT, Oudin MJ. Understanding and modeling nerve‐cancer interactions. Dis Model Mech. 2023;16(1). https://doi.org/10.1242/dmm.049729
Zong H, Parada LF, Baker SJ. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol. 2015;7(5):a020610. https://doi.org/10.1101/cshperspect.a020610
Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science. 2014;344(6183):1252304. https://doi.org/10.1126/science.1252304
Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC. Excitation‐neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42(4):535–52. https://doi.org/10.1016/s0896-6273(04)00266-1
Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, et al. Neuronal activity promotes glioma growth through neuroligin‐3 secretion. Cell. 2015;161(4):803–16. https://doi.org/10.1016/j.cell.2015.04.012
Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455(7215):903–11. https://doi.org/10.1038/nature07456
Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, et al. Targeting neuronal activity‐regulated neuroligin‐3 dependency in high‐grade glioma. Nature. 2017;549(7673):533–7. https://doi.org/10.1038/nature24014
Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O, Guo X, et al. NF1 mutation drives neuronal activity‐dependent initiation of optic glioma. Nature. 2021;594(7862):277–82. https://doi.org/10.1038/s41586-021-03580-6
Smith TM, Jr., Tharakan A, Martin RK. Targeting ADAM10 in cancer and autoimmunity. Front Immunol. 2020;11:499. https://doi.org/10.3389/fimmu.2020.00499
Wong AW, Xiao J, Kemper D, Kilpatrick TJ, Murray SS. Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation. J Neurosci. 2013;33(11):4947–57. https://doi.org/10.1523/JNEUROSCI.3990-12.2013
Geraghty AC, Gibson EM, Ghanem RA, Greene JJ, Ocampo A, Goldstein AK, et al. Loss of adaptive myelination contributes to methotrexate chemotherapy‐related cognitive impairment. Neuron. 2019;103(2):250–265.e8. https://doi.org/10.1016/j.neuron.2019.04.032
Xiong J, Zhou L, Yang M, Lim Y, Zhu YH, Fu DL, et al. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro Oncol. 2013;15(8):990–1007. https://doi.org/10.1093/neuonc/not039
Xiong J, Zhou L, Lim Y, Yang M, Zhu YH, Li ZW, et al. Mature BDNF promotes the growth of glioma cells in vitro. Oncol Rep. 2013;30(6):2719–24. https://doi.org/10.3892/or.2013.2746
Xiong J, Zhou LI, Lim Y, Yang M, Zhu YH, Li ZW, et al. Mature brain‐derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues. Oncol Lett. 2015;10(1):223–7. https://doi.org/10.3892/ol.2015.3181
Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, et al. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell. 2018;22(4):514–528.e5. https://doi.org/10.1016/j.stem.2018.03.011
Venkataramani V, Tanev DI, Kuner T, Wick W, Winkler F. Synaptic input to brain tumors: clinical implications. Neuro Oncol. 2021;23(1):23–33. https://doi.org/10.1093/neuonc/noaa158
Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, et al. Brain tumour cells interconnect to a functional and resistant network. Nature. 2015;528(7580):93–8. https://doi.org/10.1038/nature16071
Weil S, Osswald M, Solecki G, Grosch JK, Jung E, Lemke D, et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 2017;19(10):1316–26. https://doi.org/10.1093/neuonc/nox070
Jung E, Osswald M, Blaes J, Wiestler B, Sahm F, Schmenger T, et al. Tweety‐homolog 1 drives brain colonization of gliomas. J Neurosci. 2017;37(29):6837–50. https://doi.org/10.1523/JNEUROSCI.3532-16.2017
Campbell SL, Buckingham SC, Sontheimer H. Human glioma cells induce hyperexcitability in cortical networks. Epilepsia. 2012;53(8):1360–70. https://doi.org/10.1111/j.1528-1167.2012.03557.x
Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, et al. Glutamate release by primary brain tumors induces epileptic activity. Nat Med. 2011;17(10):1269–74. https://doi.org/10.1038/nm.2453
Campbell SL, Robel S, Cuddapah VA, Robert S, Buckingham SC, Kahle KT, et al. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor‐associated epilepsy. Glia. 2015;63(1):23–36. https://doi.org/10.1002/glia.22730
John Lin CC, Yu K, Hatcher A, Huang TW, Lee HK, Carlson J, et al. Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci. 2017;20(3):396–405. https://doi.org/10.1038/nn.4493
Yu K, Lin CJ, Hatcher A, Lozzi B, Kong K, Huang‐Hobbs E, et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 2020;578(7793):166–71. https://doi.org/10.1038/s41586-020-1952-2
Ceyhan GO, Giese NA, Erkan M, Kerscher AG, Wente MN, Giese T, et al. The neurotrophic factor artemin promotes pancreatic cancer invasion. Ann Surg. 2006;244(2):274–81. https://doi.org/10.1097/01.sla.0000217642.68697.55
Sawai H, Okada Y, Kazanjian K, Kim J, Hasan S, Hines OJ, et al. The G691S RET polymorphism increases glial cell line‐derived neurotrophic factor‐induced pancreatic cancer cell invasion by amplifying mitogen‐activated protein kinase signaling. Cancer Res. 2005;65(24):11536–44. https://doi.org/10.1158/0008-5472.CAN-05-2843
He S, Chen CH, Chernichenko N, He S, Bakst RL, Barajas F, et al. GFRalpha1 released by nerves enhances cancer cell perineural invasion through GDNF‐RET signaling. Proc Natl Acad Sci U S A. 2014;111(19):E2008–17. https://doi.org/10.1073/pnas.1402944111
Xin B, He X, Wang J, Cai J, Wei W, Zhang T, et al. Nerve growth factor regulates CD133 function to promote tumor cell migration and invasion via activating ERK1/2 signaling in pancreatic cancer. Pancreatology. 2016;16(6):1005–14. https://doi.org/10.1016/j.pan.2016.09.005
Bapat AA, Munoz RM, Von Hoff DD, Han H. Blocking nerve growth factor signaling reduces the neural invasion potential of pancreatic cancer cells. PLoS One. 2016;11(10):e0165586. https://doi.org/10.1371/journal.pone.0165586
Qin T, Xiao Y, Qian W, Wang X, Gong M, Wang Q, et al. HGF/c‐Met pathway facilitates the perineural invasion of pancreatic cancer by activating the mTOR/NGF axis. Cell Death Dis. 2022;13(4):387. https://doi.org/10.1038/s41419-022-04799-5
Guo K, Ma Q, Li J, Wang Z, Shan T, Li W, et al. Interaction of the sympathetic nerve with pancreatic cancer cells promotes perineural invasion through the activation of STAT3 signaling. Mol Cancer Therapeut. 2013;12(3):264–73. https://doi.org/10.1158/1535-7163.MCT-12-0809
Eng JW, Reed CB, Kokolus KM, Pitoniak R, Utley A, Bucsek MJ, et al. Housing temperature‐induced stress drives therapeutic resistance in murine tumour models through β2‐adrenergic receptor activation. Nat Commun. 2015;6(1):6426. https://doi.org/10.1038/ncomms7426
Chen H, Zhang W, Cheng X, Guo L, Xie S, Ma Y, et al. β2‐AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells. Cancer Sci. 2017;108(7):1310–7. https://doi.org/10.1111/cas.13275
Guillot J, Dominici C, Lucchesi A, Nguyen HTT, Puget A, Hocine M, et al. Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer. Nat Commun. 2022;13(1):1985. https://doi.org/10.1038/s41467-022-29659-w
Zhang L, Guo L, Tao M, Fu W, Xiu D. Parasympathetic neurogenesis is strongly associated with tumor budding and correlates with an adverse prognosis in pancreatic ductal adenocarcinoma. Chin J Cancer Res. 2016;28(2):180–6. https://doi.org/10.21147/j.issn.1000-9604.2016.02.05
Yang MW, Tao LY, Jiang YS, Yang JY, Huo YM, Liu DJ, et al. Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma. Cancer Res. 2020;80(10):1991–2003. https://doi.org/10.1158/0008-5472.Can-19-2689
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat‐activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24. https://doi.org/10.1038/39807
Lesina M, Kurkowski MU, Ludes K, Rose‐John S, Treiber M, Klöppel G, et al. Stat3/Socs3 activation by IL‐6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 2011;19(4):456–69. https://doi.org/10.1016/j.ccr.2011.03.009
Barbieri F, Bajetto A, Pattarozzi A, Gatti M, Würth R, Thellung S, et al. Peptide receptor targeting in cancer: the somatostatin paradigm. Int J Pept. 2013;2013:926295. https://doi.org/10.1155/2013/926295
Tan X, Sivakumar S, Bednarsch J, Wiltberger G, Kather JN, Niehues J, et al. Nerve fibers in the tumor microenvironment in neurotropic cancer‐pancreatic cancer and cholangiocarcinoma. Oncogene. 2021;40(5):899–908. https://doi.org/10.1038/s41388-020-01578-4
Cao Z, Qiu J, Guo J, Xiong G, Jiang K, Zheng S, et al. A randomised, multicentre trial of somatostatin to prevent clinically relevant postoperative pancreatic fistula in intermediate‐risk patients after pancreaticoduodenectomy. J Gastroenterol. 2021;56(10):938–48. https://doi.org/10.1007/s00535-021-01818-8
Hirth M, Gandla J, Hoper C, Gaida MM, Agarwal N, Simonetti M, et al. CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice, associated with pain in patients. Gastroenterology. 2020;159(2):665–681.e13. https://doi.org/10.1053/j.gastro.2020.04.037
Li F, He C, Yao H, Zhao Y, Ye X, Zhou S, et al. Glutamate from nerve cells promotes perineural invasion in pancreatic cancer by regulating tumor glycolysis through HK2 mRNA‐m6A modification. Pharmacol Res. 2023;187:106555. https://doi.org/10.1016/j.phrs.2022.106555
Deborde S, Gusain L, Powers A, Marcadis A, Yu Y, Chen CH, et al. Reprogrammed Schwann cells organize into dynamic tracks that promote pancreatic cancer invasion. Cancer Discov. 2022;12(10):2454–73. https://doi.org/10.1158/2159-8290.CD-21-1690
Tian Z, Ou G, Su M, Li R, Pan L, Lin X, et al. TIMP1 derived from pancreatic cancer cells stimulates Schwann cells and promotes the occurrence of perineural invasion. Cancer Lett. 2022;546:215863. https://doi.org/10.1016/j.canlet.2022.215863
Su D, Guo X, Huang L, Ye H, Li Z, Lin L, et al. Tumor‐neuroglia interaction promotes pancreatic cancer metastasis. Theranostics. 2020;10(11):5029–47. https://doi.org/10.7150/thno.42440
Luo H, Xia X, Huang LB, An H, Cao M, Kim GD, et al. Pan‐cancer single‐cell analysis reveals the heterogeneity and plasticity of cancer‐associated fibroblasts in the tumor microenvironment. Nat Commun. 2022;13(1):6619. https://doi.org/10.1038/s41467-022-34395-2
Yang YH, Liu JB, Gui Y, Lei LL, Zhang SJ. Relationship between autophagy and perineural invasion, clinicopathological features, and prognosis in pancreatic cancer. World J Gastroenterol. 2017;23(40):7232–41. https://doi.org/10.3748/wjg.v23.i40.7232
Yang YH, Zhang YX, Gui Y, Liu JB, Sun JJ, Fan H. Analysis of the autophagy gene expression profile of pancreatic cancer based on autophagy‐related protein microtubule‐associated protein 1A/1B‐light chain 3. World J Gastroenterol. 2019;25(17):2086–98. https://doi.org/10.3748/wjg.v25.i17.2086
Ding Y, He D, Florentin D, Frolov A, Hilsenbeck S, Ittmann M, et al. Semaphorin 4F as a critical regulator of neuroepithelial interactions and a biomarker of aggressive prostate cancer. Clin Cancer Res. 2013;19(22):6101–11. https://doi.org/10.1158/1078-0432.CCR-12-3669
Belmadani A, Tran PB, Ren D, Assimacopoulos S, Grove EA, Miller RJ. The chemokine stromal cell‐derived factor‐1 regulates the migration of sensory neuron progenitors. J Neurosci. 2005;25(16):3995–4003. https://doi.org/10.1523/JNEUROSCI.4631-04.2005
Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell‐derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101(52):18117–22. https://doi.org/10.1073/pnas.0408258102
Zhang S, Qi L, Li M, Zhang D, Xu S, Wang N, et al. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J Exp Clin Cancer Res. 2008;27(1):62. https://doi.org/10.1186/1756-9966-27-62
Decker AM, Jung Y, Cackowski FC, Yumoto K, Wang J, Taichman RS. Sympathetic signaling reactivates quiescent disseminated prostate cancer cells in the bone marrow. Mol Cancer Res. 2017;15(12):1644–55. https://doi.org/10.1158/1541-7786.MCR-17-0132
Grytli HH, Fagerland MW, Fossa SD, Tasken KA. Association between use of beta‐blockers and prostate cancer‐specific survival: a cohort study of 3561 prostate cancer patients with high‐risk or metastatic disease. Eur Urol. 2014;65(3):635–41. https://doi.org/10.1016/j.eururo.2013.01.007
Grytli HH, Fagerland MW, Fossa SD, Tasken KA, Haheim LL. Use of beta‐blockers is associated with prostate cancer‐specific survival in prostate cancer patients on androgen deprivation therapy. Prostate. 2013;73(3):250–60. https://doi.org/10.1002/pros.22564
Assayag J, Pollak MN, Azoulay L. Post‐diagnostic use of beta‐blockers and the risk of death in patients with prostate cancer. Eur J Cancer. 2014;50(16):2838–45. https://doi.org/10.1016/j.ejca.2014.08.006
Cardwell CR, Coleman HG, Murray LJ, O'Sullivan JM, Powe DG. Beta‐blocker usage and prostate cancer survival: a nested case‐control study in the UK Clinical Practice Research Datalink cohort. Cancer Epidemiol. 2014;38(3):279–85. https://doi.org/10.1016/j.canep.2014.03.011
Lu H, Liu X, Guo F, Tan S, Wang G, Liu H, et al. Impact of beta‐blockers on prostate cancer mortality: a meta‐analysis of 16,825 patients. OncoTargets Ther. 2015;8:985–90. https://doi.org/10.2147/OTT.S78836
Vaes N, Idris M, Boesmans W, Alves MM, Melotte V. Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol. 2022;19(12):768–84. https://doi.org/10.1038/s41575-022-00669-9
Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31(1):21–34. https://doi.org/10.1016/j.ccell.2016.11.005
Raufman JP, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, et al. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res. 2008;68(10):3573–8. https://doi.org/10.1158/0008-5472.CAN-07-6810
Cheng K, Zimniak P, Raufman JP. Transactivation of the epidermal growth factor receptor mediates cholinergic agonist‐induced proliferation of H508 human colon cancer cells. Cancer Res. 2003;63(20):6744–50. https://www.ncbi.nlm.nih.gov/pubmed/14583469
Yu H, Xia H, Tang Q, Xu H, Wei G, Chen Y, et al. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci Rep. 2017;7(1):40802. https://doi.org/10.1038/srep40802
Rabben HL, Andersen GT, Olsen MK, Overby A, Ianevski A, Kainov D, et al. Neural signaling modulates metabolism of gastric cancer. iScience. 2021;24(2):102091. https://doi.org/10.1016/j.isci.2021.102091
Rademakers G, Vaes N, Schonkeren S, Koch A, Sharkey KA, Melotte V. The role of enteric neurons in the development and progression of colorectal cancer. Biochim Biophys Acta Rev Cancer. 2017;1868(2):420–34. https://doi.org/10.1016/j.bbcan.2017.08.003
Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol. 2016;13(9):517–28. https://doi.org/10.1038/nrgastro.2016.107
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev. 2023;103(2):1487–564. https://doi.org/10.1152/physrev.00018.2022
Vaes N, Schonkeren SL, Rademakers G, Holland AM, Koch A, Gijbels MJ, et al. Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Rep. 2021;22(6):e51913. https://doi.org/10.15252/embr.202051913
Zhu P, Lu T, Chen Z, Liu B, Fan D, Li C, et al. 5‐hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self‐renewal and tumorigenesis. Neuron. 2022;110(14):2268–2282.e4. https://doi.org/10.1016/j.neuron.2022.04.024
Niu Q, Li L, Zhang C, Qi C, He Q, Zhu Y. Expression of 5‐HT relates to stem cell marker LGR5 in patients with gastritis and gastric cancer. Dig Dis Sci. 2023;68(5):1864–72. https://doi.org/10.1007/s10620-022-07772-6
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.