Journal Home > Volume 1 , Issue 3

Crosstalk between tumors and the nervous system has emerged as a significant hallmark of human cancer. In the central nervous system, neurons closely interact with tumor cells, promoting the proliferation of glioma and neuroblastoma. Additionally, the peripheral nervous system plays a crucial role in reshaping the tumor microenvironment, modulating angiogenesis, and regulating immune cell function, while also directly promoting tumorigenesis and metastasis. Current research has elucidated some of the specific neural signaling mechanisms involved in this crosstalk, including neurotransmitters, neuropeptides, and growth factors. In this review, we aim to summarize these mechanisms and highlight the latest discoveries in various solid tumors, such as glioma, pancreatic, prostate, and gastrointestinal cancers. By understanding the intricate crosstalk between cancer cells and the nervous system, we can develop more effective and targeted treatments for cancer patients.


menu
Abstract
Full text
Outline
About this article

Crosstalk between cancer cells and the nervous system

Show Author's information Meng Huang1,2Gu Gong3Yicheng Deng4Xinmiao Long5Wenyong Long3Qing Liu3Wei Zhao1,2 ( )Rufu Chen2( )
Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
Zhongshan School of Medicine, Sun Yat‐sen University, Guangzhou, China
Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China

Abstract

Crosstalk between tumors and the nervous system has emerged as a significant hallmark of human cancer. In the central nervous system, neurons closely interact with tumor cells, promoting the proliferation of glioma and neuroblastoma. Additionally, the peripheral nervous system plays a crucial role in reshaping the tumor microenvironment, modulating angiogenesis, and regulating immune cell function, while also directly promoting tumorigenesis and metastasis. Current research has elucidated some of the specific neural signaling mechanisms involved in this crosstalk, including neurotransmitters, neuropeptides, and growth factors. In this review, we aim to summarize these mechanisms and highlight the latest discoveries in various solid tumors, such as glioma, pancreatic, prostate, and gastrointestinal cancers. By understanding the intricate crosstalk between cancer cells and the nervous system, we can develop more effective and targeted treatments for cancer patients.

Keywords: tumor microenvironment, neurotransmitters, cell crosstalk, central nervous system in cancer, peripheral nervous system in cancer

References(166)

[1]

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9

[2]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013

[3]

Senga SS, Grose RP. Hallmarks of cancer‐the new testament. Open Biol. 2021;11(1):200358. https://doi.org/10.1098/rsob.200358

[4]

Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5(1):166. https://doi.org/10.1038/s41392-020-00280-x

[5]

Magnon C, Hondermarck H. The neural addiction of cancer. Nat Rev Cancer. 2023;23(5):317–34. https://doi.org/10.1038/s41568-023-00556-8

[6]

Monje M, Borniger JC, D'Silva NJ, Deneen B, Dirks PB, Fattahi F, et al. Roadmap for the emerging field of cancer neuroscience. Cell. 2020;181(2):219–22. https://doi.org/10.1016/j.cell.2020.03.034

[7]

Wang W, Li L, Chen N, Niu C, Li Z, Hu J, et al. Nerves in the tumor microenvironment: origin and effects. Front Cell Dev Biol. 2020;8:601738. https://doi.org/10.3389/fcell.2020.601738

[8]

Zahalka AH, Frenette PS. Nerves in cancer. Nat Rev Cancer. 2020;20(3):143–57. https://doi.org/10.1038/s41568-019-0237-2

[9]

Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, et al. Cancer neuroscience: state of the field, emerging directions. Cell. 2023;186(8):1689–707. https://doi.org/10.1016/j.cell.2023.02.002

[10]

Lei Y, Tang L, Xie Y, Xianyu Y, Zhang L, Wang P, et al. Gold nanoclusters‐assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat Commun. 2017;8(1):15130. https://doi.org/10.1038/ncomms15130

[11]

Demir IE, Friess H, Ceyhan GO. Nerve‐cancer interactions in the stromal biology of pancreatic cancer. Front Physiol. 2012;3:97. https://doi.org/10.3389/fphys.2012.00097

[12]

Deshmukh SD, Willmann JK, Jeffrey RB. Pathways of extrapancreatic perineural invasion by pancreatic adenocarcinoma: evaluation with 3D volume‐rendered MDCT imaging. AJR Am J Roentgenol. 2010;194(3):668–74. https://doi.org/10.2214/AJR.09.3285

[13]

Bapat AA, Hostetter G, Von Hoff DD, Han H. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 2011;11(10):695–707. https://doi.org/10.1038/nrc3131

[14]

Bilici A, Seker M, Ustaalioglu BB, Kefeli U, Yildirim E, Yavuzer D, et al. Prognostic significance of perineural invasion in patients with gastric cancer who underwent curative resection. Ann Surg Oncol. 2010;17(8):2037–44. https://doi.org/10.1245/s10434-010-1027-y

[15]

Hwang JE, Hong JY, Kim JE, Shim HJ, Bae WK, Hwang EC, et al. Prognostic significance of the concomitant existence of lymphovascular and perineural invasion in locally advanced gastric cancer patients who underwent curative gastrectomy and adjuvant chemotherapy. Jpn J Clin Oncol. 2015;45(6):541–6. https://doi.org/10.1093/jjco/hyv031

[16]

Deng J, You Q, Gao Y, Yu Q, Zhao P, Zheng Y, et al. Prognostic value of perineural invasion in gastric cancer: a systematic review and meta‐analysis. PLoS One. 2014;9(2):e88907. https://doi.org/10.1371/journal.pone.0088907

[17]

Espana‐Ferrufino A, Lino‐Silva LS, Salcedo‐Hernandez RA. Extramural perineural invasion in pT3 and pT4 gastric carcinomas. J Pathol Transl Med. 2018;52(2):79–84. https://doi.org/10.4132/jptm.2017.11.01

[18]

Maruyama S, Kawaida H, Hosomura N, Amemiya H, Saito R, Shimizu H, et al. Indications for extrahepatic bile duct resection due to perineural invasion in patients with gallbladder cancer. World J Surg Oncol. 2019;17(1):200. https://doi.org/10.1186/s12957-019-1735-0

[19]

Feo CF, Cossu ML, Ginesu GC, Ginesu GC, Fancellu A, Scanu AM, et al. Perineural infiltration as a prognostic factor in surgically treated gallbladder cancer A single center experience and literature review. Ann Ital Chir. 2017;88:485–90. https://www.ncbi.nlm.nih.gov/pubmed/29339591

[20]

Oven Ustaalioglu BB, Bilici A, Seker M, Kefeli U, Aydin D, Celik S, et al. Prognostic factors for operated gallbladder cancer. J Gastrointest Cancer. 2019;50(3):451–7. https://doi.org/10.1007/s12029-018-0099-y

[21]

Schmitd LB, Scanlon CS, D'Silva NJ. Perineural invasion in head and neck cancer. J Dent Res. 2018;97(7):742–50. https://doi.org/10.1177/0022034518756297

[22]

Panizza B, Warren T. Perineural invasion of head and neck skin cancer: diagnostic and therapeutic implications. Curr Oncol Rep. 2013;15(2):128–33. https://doi.org/10.1007/s11912-012-0288-y

[23]

Zanoni DK, Montero PH, Migliacci JC, Shah JP, Wong RJ, Ganly I, et al. Survival outcomes after treatment of cancer of the oral cavity (1985‐2015). Oral Oncol. 2019;90:115–21. https://doi.org/10.1016/j.oraloncology.2019.02.001

[24]

Hosoya K, Wakahara M, Ikeda K, Umekita Y. Perineural invasion predicts unfavorable prognosis in patients with invasive breast cancer. Cancer Diagn Progn. 2023;3(2):208–14. https://doi.org/10.21873/cdp.10203

[25]

Hu J, Chen W, Shen L, Chen Z, Huang J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer. 2022;1877(6):188828. https://doi.org/10.1016/j.bbcan.2022.188828

[26]

Zhu Y, Zhang G, Yang Y, Cui L, Jia S, Shi Y, et al. Perineural invasion in early‐stage cervical cancer and its relevance following surgery. Oncol Lett. 2018;15(5):6555–61. https://doi.org/10.3892/ol.2018.8116

[27]

Memarzadeh S, Natarajan S, Dandade DP, Ostrzega N, Saber PA, Busuttil A, et al. Lymphovascular and perineural invasion in the parametria: a prognostic factor for early‐stage cervical cancer. Obstet Gynecol. 2003;102(3):612–9. https://doi.org/10.1016/s0029-7844(03)00569-6

[28]

Cho HC, Kim H, Cho HY, Kim K, No JH, Kim YB. Prognostic significance of perineural invasion in cervical cancer. Int J Gynecol Pathol. 2013;32(2):228–33. https://doi.org/10.1097/PGP.0b013e318257df5f

[29]

Cui L, Shi Y, Zhang GN. Perineural invasion as a prognostic factor for cervical cancer: a systematic review and meta‐analysis. Arch Gynecol Obstet. 2015;292(1):13–9. https://doi.org/10.1007/s00404-015-3627-z

[30]

Ozaki H, Hiraoka T, Mizumoto R, Matsuno S, Matsumoto Y, Nakayama T, et al. The prognostic significance of lymph node metastasis and intrapancreatic perineural invasion in pancreatic cancer after curative resection. Surg Today. 1999;29(1):16–22. https://doi.org/10.1007/BF02482964

[31]

Beard CJ, Chen MH, Cote K, Loffredo M, Renshaw AA, Hurwitz M, et al. Perineural invasion is associated with increased relapse after external beam radiotherapy for men with low‐risk prostate cancer and may be a marker for occult, high‐grade cancer. Int J Radiat Oncol Biol Phys. 2004;58(1):19–24. https://doi.org/10.1016/s0360-3016(03)01433-0

[32]

Duraker N, Sisman S, Can G. The significance of perineural invasion as a prognostic factor in patients with gastric carcinoma. Surg Today. 2003;33(2):95–100. https://doi.org/10.1007/s005950300020

[33]

Huang Y, He L, Dong D, Yang C, Liang C, Chen X, et al. Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model. Chin J Cancer Res. 2018;30(1):40–50. https://doi.org/10.21147/j.issn.1000-9604.2018.01.05

[34]

Kinugasa T, Mizobe T, Shiraiwa S, Akagi Y, Shirouzu K. Perineural invasion is a prognostic factor and treatment indicator in patients with rectal cancer undergoing curative surgery: 2000‐2011 Data from a single‐center study. Anticancer Res. 2017;37(7):3961–8. https://doi.org/10.21873/anticanres.11780

[35]

Zare‐Bandamiri M, Fararouei M, Zohourinia S, Daneshi N, Dianatinasab M. Risk factors predicting colorectal cancer recurrence following initial treatment: a 5‐year cohort study. Asian Pac J Cancer Prev. 2017;18(9):2465–70. https://doi.org/10.22034/APJCP.2017.18.9.2465

[36]

Shi DD, Guo JA, Hoffman HI, Su J, Mino‐Kenudson M, Barth JL, et al. Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities. Lancet Oncol. 2022;23(2):e6274. https://doi.org/10.1016/S1470-2045(21)00596-9

[37]

Venkataramani V, Tanev DI, Strahle C, Studier‐Fischer A, Fankhauser L, Kessler T, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573(7775):532–8. https://doi.org/10.1038/s41586-019-1564-x

[38]

Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775):539–45. https://doi.org/10.1038/s41586-019-1563-y

[39]

Zeng Q, Michael IP, Zhang P, Saghafinia S, Knott G, Jiao W, et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature. 2019;573(7775):526–31. https://doi.org/10.1038/s41586-019-1576-6

[40]

Robinson HPC, Li L. Autocrine, paracrine and necrotic NMDA receptor signalling in mouse pancreatic neuroendocrine tumour cells. Open Biol. 2017;7(12):170221. https://doi.org/10.1098/rsob.170221

[41]

Li L, Zeng Q, Bhutkar A, Galvan JA, Karamitopoulou E, Noordermeer D, et al. GKAP acts as a genetic modulator of NMDAR signaling to govern invasive tumor growth. Cancer Cell. 2018;33(4):736–51.e5. https://doi.org/10.1016/j.ccell.2018.02.011

[42]

Li L, Hanahan D. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell. 2013;153(1):86–100. https://doi.org/10.1016/j.cell.2013.02.051

[43]

Schmitt A, Sakthivelu V, Ndoci K, Wani GA, Touet M, Pintelon I, et al. Functional synapses between small cell lung cancer and glutamatergic neurons. bioRxiv. 2023. https://doi.org/10.1101/2023.01.19.524045

[44]

Gibbons CH. Basics of autonomic nervous system function. Handb Clin Neurol. 2019;160:407–18. https://doi.org/10.1016/B978-0-444-64032-1.00027-8

[45]

Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70(18):7042–52. https://doi.org/10.1158/0008-5472.CAN-10-0522

[46]

Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):1236361. https://doi.org/10.1126/science.1236361

[47]

Allen JK, Armaiz‐Pena GN, Nagaraja AS, Sadaoui NC, Ortiz T, Dood R, et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 2018;78(12):3233–42. https://doi.org/10.1158/0008-5472.CAN-16-1701

[48]

Zahalka AH, Arnal‐Estape A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS, et al. Adrenergic nerves activate an angio‐metabolic switch in prostate cancer. Science. 2017;358(6361):321–6. https://doi.org/10.1126/science.aah5072

[49]

Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, et al. β2 adrenergic‐neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;33(1):75–90.e7. https://doi.org/10.1016/j.ccell.2017.11.007

[50]

Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014;6(250):250ra115. https://doi.org/10.1126/scitranslmed.3009569

[51]

Partecke LI, Kading A, Trung DN, Diedrich S, Sendler M, Weiss F, et al. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFalpha in a murine pancreatic cancer model. Oncotarget. 2017;8(14):22501–12. https://doi.org/10.18632/oncotarget.15019

[52]

Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z, Macchini M, et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 2018;8(11):1458–73. https://doi.org/10.1158/2159-8290.CD-18-0046

[53]

Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM, et al. Cancer‐related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res. 2008;14(23):7593–603. https://doi.org/10.1158/1078-0432.CCR-08-1164

[54]

Banh RS, Biancur DE, Yamamoto K, Sohn ASW, Walters B, Kuljanin M, et al. Neurons release serine to support mRNA translation in pancreatic cancer. Cell. 2020;183(5):1202–18.e25. https://doi.org/10.1016/j.cell.2020.10.016

[55]

Han H, Yang C, Zhang Y, Han C, Zhang G. Vascular endothelial growth factor mediates the sprouted axonogenesis of breast cancer in rat. Am J Pathol. 2021;191(3):515–26. https://doi.org/10.1016/j.ajpath.2020.12.006

[56]

Pundavela J, Demont Y, Jobling P, Lincz LF, Roselli S, Thorne RF, et al. ProNGF correlates with Gleason score and is a potential driver of nerve infiltration in prostate cancer. Am J Pathol. 2014;184(12):3156–62. https://doi.org/10.1016/j.ajpath.2014.08.009

[57]

Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N, et al. Brain‐derived neurotrophic factor and neurotrophin‐4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res. 2011;17(7):1741–52. https://doi.org/10.1158/1078-0432.CCR-10-1890

[58]

Zeng Q, Cheng Y, Zhu Q, Yu Z, Wu X, Huang K, et al. The relationship between overexpression of glial cell‐derived neurotrophic factor and its RET receptor with progression and prognosis of human pancreatic cancer. J Int Med Res. 2008;36(4):656–64. https://doi.org/10.1177/147323000803600406

[59]

Gil Z, Cavel O, Kelly K, Brader P, Rein A, Gao SP, et al. Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J Natl Cancer Inst. 2010;102(2):107–18. https://doi.org/10.1093/jnci/djp456

[60]

Cavel O, Shomron O, Shabtay A, Vital J, Trejo‐Leider L, Weizman N, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res. 2012;72(22):5733–43. https://doi.org/10.1158/0008-5472.Can-12-0764

[61]

Yin K, Wang L, Xia Y, Dang S, Zhang X, He Z, et al. Netrin‐1 promotes cell neural invasion in gastric cancer via its receptor neogenin. J Cancer. 2019;10(14):3197–207. https://doi.org/10.7150/jca.30230

[62]

Fitamant J, Guenebeaud C, Coissieux MM, Guix C, Treilleux I, Scoazec JY, et al. Netrin‐1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci U S A. 2008;105(12):4850–5. https://doi.org/10.1073/pnas.0709810105

[63]

Mehlen P, Delloye‐Bourgeois C, Chedotal A. Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer. 2011;11(3):188–97. https://doi.org/10.1038/nrc3005

[64]

Madeo M, Colbert PL, Vermeer DW, Lucido CT, Cain JT, Vichaya EG, et al. Cancer exosomes induce tumor innervation. Nat Commun. 2018;9(1):4284. https://doi.org/10.1038/s41467-018-06640-0

[65]

Li X, Peng X, Yang S, Wei S, Fan Q, Liu J, et al. Targeting tumor innervation: premises, promises, and challenges. Cell Death Dis. 2022;8(1):131. https://doi.org/10.1038/s41420-022-00930-9

[66]

Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in cancer: a review of the literature. Cancer. 2009;115(15):3379–91. https://doi.org/10.1002/cncr.24396

[67]

Wang J, Chen Y, Li X, Zou X. Perineural invasion and associated pain transmission in pancreatic cancer. Cancers. 2021;13(18):4594. https://doi.org/10.3390/cancers13184594

[68]

Bakst RL, Glastonbury CM, Parvathaneni U, Katabi N, Hu KS, Yom SS. Perineural invasion and perineural tumor spread in head and neck cancer. Int J Radiat Oncol Biol Phys. 2019;103(5):1109–24. https://doi.org/10.1016/j.ijrobp.2018.12.009

[69]

Marchesi F, Piemonti L, Mantovani A, Allavena P. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 2010;21(1):77–82. https://doi.org/10.1016/j.cytogfr.2009.11.001

[70]

Demir IE, Ceyhan GO, Liebl F, D'Haese JG, Maak M, Friess H. Neural invasion in pancreatic cancer: the past, present and future. Cancers. 2010;2(3):1513–27. https://doi.org/10.3390/cancers2031513

[71]

Chen SH, Zhang BY, Zhou B, Zhu CZ, Sun LQ, Feng YJ. Perineural invasion of cancer: a complex crosstalk between cells and molecules in the perineural niche. Am J Cancer Res. 2019;9(1):1–21. https://www.ncbi.nlm.nih.gov/pubmed/30755808

[72]

Yao J, Li WY, Li SG, Feng XS, Gao SG. Midkine promotes perineural invasion in human pancreatic cancer. World J Gastroenterol. 2014;20(11):3018–24. https://doi.org/10.3748/wjg.v20.i11.3018

[73]

Doan C, Aouizerat BE, Ye Y, Dang D, Asam K, Bhattacharya A, et al. Neurotrophin pathway receptors NGFR and TrkA control perineural invasion, metastasis, and pain in oral cancer. Adv Biol (Weinh). 2022;6(9):e2200190. https://doi.org/10.1002/adbi.202200190

[74]

Lian EY, Hyndman BD, Moodley S, Maritan SM, Mulligan LM. RET isoforms contribute differentially to invasive processes in pancreatic ductal adenocarcinoma. Oncogene. 2020;39(41):6493–510. https://doi.org/10.1038/s41388-020-01448-z

[75]

Saloman JL, Singhi AD, Hartman DJ, Normolle DP, Albers KM, Davis BM. Systemic depletion of nerve growth factor inhibits disease progression in a genetically engineered model of pancreatic ductal adenocarcinoma. Pancreas. 2018;47(7):856–63. https://doi.org/10.1097/MPA.0000000000001090

[76]

Jurcak NR, Rucki AA, Muth S, Thompson E, Sharma R, Ding D, et al. Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice. Gastroenterology. 2019;157(3):838–50.e6. https://doi.org/10.1053/j.gastro.2019.05.065

[77]

Okada Y, Takeyama H, Sato M, Morikawa M, Sobue K, Asai K, et al. Experimental implication of celiac ganglionotropic invasion of pancreatic‐cancer cells bearing c‐ret proto‐oncogene with reference to glial‐cell‐line‐derived neurotrophic factor (GDNF). Int J Cancer. 1999;81(1):67–73. https://doi.org/10.1002/(sici)1097-0215(19990331)81:1<67::aid-ijc13>3.0.co;2-v

[78]

Veit C, Genze F, Menke A, Hoeffert S, Gress TM, Gierschik P, et al. Activation of phosphatidylinositol 3‐kinase and extracellular signal‐regulated kinase is required for glial cell line‐derived neurotrophic factor‐induced migration and invasion of pancreatic carcinoma cells. Cancer Res. 2004;64(15):5291–300. https://doi.org/10.1158/0008-5472.CAN-04-1112

[79]

Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, et al. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest. 2016;126(4):1538–54. https://doi.org/10.1172/JCI82658

[80]

Swanson BJ, McDermott KM, Singh PK, Eggers JP, Crocker PR, Hollingsworth MA. MUC1 is a counter‐receptor for myelin‐associated glycoprotein (Siglec‐4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion. Cancer Res. 2007;67(21):10222–9. https://doi.org/10.1158/0008-5472.CAN-06-2483

[81]

Zhang W, He R, Yang W, Zhang Y, Yuan Q, Wang J, et al. Autophagic Schwann cells promote perineural invasion mediated by the NGF/ATG7 paracrine pathway in pancreatic cancer. J Exp Clin Cancer Res. 2022;41(1):48. https://doi.org/10.1186/s13046-021-02198-w

[82]

Roger E, Martel S, Bertrand‐Chapel A, Depollier A, Chuvin N, Pommier RM, et al. Schwann cells support oncogenic potential of pancreatic cancer cells through TGFbeta signaling. Cell Death Dis. 2019;10(12):886. https://doi.org/10.1038/s41419-019-2116-x

[83]

Na'ara S, Amit M, Gil Z. L1CAM induces perineural invasion of pancreas cancer cells by upregulation of metalloproteinase expression. Oncogene. 2019;38(4):596–608. https://doi.org/10.1038/s41388-018-0458-y

[84]

Thomas D, Radhakrishnan P. Tumor‐stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer. 2019;18(1):14. https://doi.org/10.1186/s12943-018-0927-5

[85]

Li J, Kang R, Tang D. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Commun. 2021;41(8):642–60. https://doi.org/10.1002/cac2.12188

[86]

Lu R, Fan C, Shangguan W, Liu Y, Li Y, Shang Y, et al. Neurons generated from carcinoma stem cells support cancer progression. Signal Transduct Target Ther. 2017;2(1):16036. https://doi.org/10.1038/sigtrans.2016.36

[87]

Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, et al. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience. 2022;25(7):104498. https://doi.org/10.1016/j.isci.2022.104498

[88]

Brown JP, Couillard‐Despres S, Cooper‐Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol. 2003;467(1):1–10. https://doi.org/10.1002/cne.10874

[89]

Couillard‐Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci. 2005;21(1):1–14. https://doi.org/10.1111/j.1460-9568.2004.03813.x

[90]

Mauffrey P, Tchitchek N, Barroca V, Bemelmans AP, Firlej V, Allory Y, et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature. 2019;569(7758):672–8. https://doi.org/10.1038/s41586-019-1219-y

[91]

Amit M, Takahashi H, Dragomir MP, Lindemann A, Gleber‐Netto FO, Pickering CR, et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature. 2020;578(7795):449–54. https://doi.org/10.1038/s41586-020-1996-3

[92]

Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30. sup pp 1‐13. https://doi.org/10.1038/ncb2000

[93]

Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz‐Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013‐2017. Neuro Oncol. 2020;22(12 (Suppl 2)):iv1–96. https://doi.org/10.1093/neuonc/noaa200

[94]

Radin DP, Tsirka SE. Interactions between tumor cells, neurons, and microglia in the glioma microenvironment. Int J Mol Sci. 2020;21(22):8476. https://doi.org/10.3390/ijms21228476

[95]

Lippmann ES, Williams CE, Ruhl DA, Estevez‐Silva MC, Chapman ER, Coon JJ, et al. Deterministic HOX patterning in human pluripotent stem cell‐derived neuroectoderm. Stem Cell Rep. 2015;4(4):632–44. https://doi.org/10.1016/j.stemcr.2015.02.018

[96]

Le TT, Oudin MJ. Understanding and modeling nerve‐cancer interactions. Dis Model Mech. 2023;16(1). https://doi.org/10.1242/dmm.049729

[97]

Zong H, Parada LF, Baker SJ. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol. 2015;7(5):a020610. https://doi.org/10.1101/cshperspect.a020610

[98]

Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science. 2014;344(6183):1252304. https://doi.org/10.1126/science.1252304

[99]

Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC. Excitation‐neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42(4):535–52. https://doi.org/10.1016/s0896-6273(04)00266-1

[100]

Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, et al. Neuronal activity promotes glioma growth through neuroligin‐3 secretion. Cell. 2015;161(4):803–16. https://doi.org/10.1016/j.cell.2015.04.012

[101]

Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455(7215):903–11. https://doi.org/10.1038/nature07456

[102]

Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, et al. Targeting neuronal activity‐regulated neuroligin‐3 dependency in high‐grade glioma. Nature. 2017;549(7673):533–7. https://doi.org/10.1038/nature24014

[103]

Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O, Guo X, et al. NF1 mutation drives neuronal activity‐dependent initiation of optic glioma. Nature. 2021;594(7862):277–82. https://doi.org/10.1038/s41586-021-03580-6

[104]

Smith TM, Jr., Tharakan A, Martin RK. Targeting ADAM10 in cancer and autoimmunity. Front Immunol. 2020;11:499. https://doi.org/10.3389/fimmu.2020.00499

[105]

Wong AW, Xiao J, Kemper D, Kilpatrick TJ, Murray SS. Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation. J Neurosci. 2013;33(11):4947–57. https://doi.org/10.1523/JNEUROSCI.3990-12.2013

[106]

Geraghty AC, Gibson EM, Ghanem RA, Greene JJ, Ocampo A, Goldstein AK, et al. Loss of adaptive myelination contributes to methotrexate chemotherapy‐related cognitive impairment. Neuron. 2019;103(2):250–265.e8. https://doi.org/10.1016/j.neuron.2019.04.032

[107]

Xiong J, Zhou L, Yang M, Lim Y, Zhu YH, Fu DL, et al. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro Oncol. 2013;15(8):990–1007. https://doi.org/10.1093/neuonc/not039

[108]

Xiong J, Zhou L, Lim Y, Yang M, Zhu YH, Li ZW, et al. Mature BDNF promotes the growth of glioma cells in vitro. Oncol Rep. 2013;30(6):2719–24. https://doi.org/10.3892/or.2013.2746

[109]

Xiong J, Zhou LI, Lim Y, Yang M, Zhu YH, Li ZW, et al. Mature brain‐derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues. Oncol Lett. 2015;10(1):223–7. https://doi.org/10.3892/ol.2015.3181

[110]

Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, et al. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell. 2018;22(4):514–528.e5. https://doi.org/10.1016/j.stem.2018.03.011

[111]

Venkataramani V, Tanev DI, Kuner T, Wick W, Winkler F. Synaptic input to brain tumors: clinical implications. Neuro Oncol. 2021;23(1):23–33. https://doi.org/10.1093/neuonc/noaa158

[112]

Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, et al. Brain tumour cells interconnect to a functional and resistant network. Nature. 2015;528(7580):93–8. https://doi.org/10.1038/nature16071

[113]

Weil S, Osswald M, Solecki G, Grosch JK, Jung E, Lemke D, et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 2017;19(10):1316–26. https://doi.org/10.1093/neuonc/nox070

[114]

Jung E, Osswald M, Blaes J, Wiestler B, Sahm F, Schmenger T, et al. Tweety‐homolog 1 drives brain colonization of gliomas. J Neurosci. 2017;37(29):6837–50. https://doi.org/10.1523/JNEUROSCI.3532-16.2017

[115]

Campbell SL, Buckingham SC, Sontheimer H. Human glioma cells induce hyperexcitability in cortical networks. Epilepsia. 2012;53(8):1360–70. https://doi.org/10.1111/j.1528-1167.2012.03557.x

[116]

Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, et al. Glutamate release by primary brain tumors induces epileptic activity. Nat Med. 2011;17(10):1269–74. https://doi.org/10.1038/nm.2453

[117]

Campbell SL, Robel S, Cuddapah VA, Robert S, Buckingham SC, Kahle KT, et al. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor‐associated epilepsy. Glia. 2015;63(1):23–36. https://doi.org/10.1002/glia.22730

[118]

John Lin CC, Yu K, Hatcher A, Huang TW, Lee HK, Carlson J, et al. Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci. 2017;20(3):396–405. https://doi.org/10.1038/nn.4493

[119]

Yu K, Lin CJ, Hatcher A, Lozzi B, Kong K, Huang‐Hobbs E, et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 2020;578(7793):166–71. https://doi.org/10.1038/s41586-020-1952-2

[120]

Ceyhan GO, Giese NA, Erkan M, Kerscher AG, Wente MN, Giese T, et al. The neurotrophic factor artemin promotes pancreatic cancer invasion. Ann Surg. 2006;244(2):274–81. https://doi.org/10.1097/01.sla.0000217642.68697.55

[121]

Sawai H, Okada Y, Kazanjian K, Kim J, Hasan S, Hines OJ, et al. The G691S RET polymorphism increases glial cell line‐derived neurotrophic factor‐induced pancreatic cancer cell invasion by amplifying mitogen‐activated protein kinase signaling. Cancer Res. 2005;65(24):11536–44. https://doi.org/10.1158/0008-5472.CAN-05-2843

[122]

He S, Chen CH, Chernichenko N, He S, Bakst RL, Barajas F, et al. GFRalpha1 released by nerves enhances cancer cell perineural invasion through GDNF‐RET signaling. Proc Natl Acad Sci U S A. 2014;111(19):E2008–17. https://doi.org/10.1073/pnas.1402944111

[123]

Xin B, He X, Wang J, Cai J, Wei W, Zhang T, et al. Nerve growth factor regulates CD133 function to promote tumor cell migration and invasion via activating ERK1/2 signaling in pancreatic cancer. Pancreatology. 2016;16(6):1005–14. https://doi.org/10.1016/j.pan.2016.09.005

[124]

Bapat AA, Munoz RM, Von Hoff DD, Han H. Blocking nerve growth factor signaling reduces the neural invasion potential of pancreatic cancer cells. PLoS One. 2016;11(10):e0165586. https://doi.org/10.1371/journal.pone.0165586

[125]

Qin T, Xiao Y, Qian W, Wang X, Gong M, Wang Q, et al. HGF/c‐Met pathway facilitates the perineural invasion of pancreatic cancer by activating the mTOR/NGF axis. Cell Death Dis. 2022;13(4):387. https://doi.org/10.1038/s41419-022-04799-5

[126]

Guo K, Ma Q, Li J, Wang Z, Shan T, Li W, et al. Interaction of the sympathetic nerve with pancreatic cancer cells promotes perineural invasion through the activation of STAT3 signaling. Mol Cancer Therapeut. 2013;12(3):264–73. https://doi.org/10.1158/1535-7163.MCT-12-0809

[127]

Eng JW, Reed CB, Kokolus KM, Pitoniak R, Utley A, Bucsek MJ, et al. Housing temperature‐induced stress drives therapeutic resistance in murine tumour models through β2‐adrenergic receptor activation. Nat Commun. 2015;6(1):6426. https://doi.org/10.1038/ncomms7426

[128]

Chen H, Zhang W, Cheng X, Guo L, Xie S, Ma Y, et al. β2‐AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells. Cancer Sci. 2017;108(7):1310–7. https://doi.org/10.1111/cas.13275

[129]

Guillot J, Dominici C, Lucchesi A, Nguyen HTT, Puget A, Hocine M, et al. Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer. Nat Commun. 2022;13(1):1985. https://doi.org/10.1038/s41467-022-29659-w

[130]

Zhang L, Guo L, Tao M, Fu W, Xiu D. Parasympathetic neurogenesis is strongly associated with tumor budding and correlates with an adverse prognosis in pancreatic ductal adenocarcinoma. Chin J Cancer Res. 2016;28(2):180–6. https://doi.org/10.21147/j.issn.1000-9604.2016.02.05

[131]

Yang MW, Tao LY, Jiang YS, Yang JY, Huo YM, Liu DJ, et al. Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma. Cancer Res. 2020;80(10):1991–2003. https://doi.org/10.1158/0008-5472.Can-19-2689

[132]

Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat‐activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24. https://doi.org/10.1038/39807

[133]

Lesina M, Kurkowski MU, Ludes K, Rose‐John S, Treiber M, Klöppel G, et al. Stat3/Socs3 activation by IL‐6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 2011;19(4):456–69. https://doi.org/10.1016/j.ccr.2011.03.009

[134]

Barbieri F, Bajetto A, Pattarozzi A, Gatti M, Würth R, Thellung S, et al. Peptide receptor targeting in cancer: the somatostatin paradigm. Int J Pept. 2013;2013:926295. https://doi.org/10.1155/2013/926295

[135]

Tan X, Sivakumar S, Bednarsch J, Wiltberger G, Kather JN, Niehues J, et al. Nerve fibers in the tumor microenvironment in neurotropic cancer‐pancreatic cancer and cholangiocarcinoma. Oncogene. 2021;40(5):899–908. https://doi.org/10.1038/s41388-020-01578-4

[136]

Cao Z, Qiu J, Guo J, Xiong G, Jiang K, Zheng S, et al. A randomised, multicentre trial of somatostatin to prevent clinically relevant postoperative pancreatic fistula in intermediate‐risk patients after pancreaticoduodenectomy. J Gastroenterol. 2021;56(10):938–48. https://doi.org/10.1007/s00535-021-01818-8

[137]

Hirth M, Gandla J, Hoper C, Gaida MM, Agarwal N, Simonetti M, et al. CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice, associated with pain in patients. Gastroenterology. 2020;159(2):665–681.e13. https://doi.org/10.1053/j.gastro.2020.04.037

[138]

Li F, He C, Yao H, Zhao Y, Ye X, Zhou S, et al. Glutamate from nerve cells promotes perineural invasion in pancreatic cancer by regulating tumor glycolysis through HK2 mRNA‐m6A modification. Pharmacol Res. 2023;187:106555. https://doi.org/10.1016/j.phrs.2022.106555

[139]

Deborde S, Gusain L, Powers A, Marcadis A, Yu Y, Chen CH, et al. Reprogrammed Schwann cells organize into dynamic tracks that promote pancreatic cancer invasion. Cancer Discov. 2022;12(10):2454–73. https://doi.org/10.1158/2159-8290.CD-21-1690

[140]

Tian Z, Ou G, Su M, Li R, Pan L, Lin X, et al. TIMP1 derived from pancreatic cancer cells stimulates Schwann cells and promotes the occurrence of perineural invasion. Cancer Lett. 2022;546:215863. https://doi.org/10.1016/j.canlet.2022.215863

[141]

Su D, Guo X, Huang L, Ye H, Li Z, Lin L, et al. Tumor‐neuroglia interaction promotes pancreatic cancer metastasis. Theranostics. 2020;10(11):5029–47. https://doi.org/10.7150/thno.42440

[142]

Luo H, Xia X, Huang LB, An H, Cao M, Kim GD, et al. Pan‐cancer single‐cell analysis reveals the heterogeneity and plasticity of cancer‐associated fibroblasts in the tumor microenvironment. Nat Commun. 2022;13(1):6619. https://doi.org/10.1038/s41467-022-34395-2

[143]

Yang YH, Liu JB, Gui Y, Lei LL, Zhang SJ. Relationship between autophagy and perineural invasion, clinicopathological features, and prognosis in pancreatic cancer. World J Gastroenterol. 2017;23(40):7232–41. https://doi.org/10.3748/wjg.v23.i40.7232

[144]

Yang YH, Zhang YX, Gui Y, Liu JB, Sun JJ, Fan H. Analysis of the autophagy gene expression profile of pancreatic cancer based on autophagy‐related protein microtubule‐associated protein 1A/1B‐light chain 3. World J Gastroenterol. 2019;25(17):2086–98. https://doi.org/10.3748/wjg.v25.i17.2086

[145]

Ding Y, He D, Florentin D, Frolov A, Hilsenbeck S, Ittmann M, et al. Semaphorin 4F as a critical regulator of neuroepithelial interactions and a biomarker of aggressive prostate cancer. Clin Cancer Res. 2013;19(22):6101–11. https://doi.org/10.1158/1078-0432.CCR-12-3669

[146]

Belmadani A, Tran PB, Ren D, Assimacopoulos S, Grove EA, Miller RJ. The chemokine stromal cell‐derived factor‐1 regulates the migration of sensory neuron progenitors. J Neurosci. 2005;25(16):3995–4003. https://doi.org/10.1523/JNEUROSCI.4631-04.2005

[147]

Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell‐derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101(52):18117–22. https://doi.org/10.1073/pnas.0408258102

[148]

Zhang S, Qi L, Li M, Zhang D, Xu S, Wang N, et al. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J Exp Clin Cancer Res. 2008;27(1):62. https://doi.org/10.1186/1756-9966-27-62

[149]

Decker AM, Jung Y, Cackowski FC, Yumoto K, Wang J, Taichman RS. Sympathetic signaling reactivates quiescent disseminated prostate cancer cells in the bone marrow. Mol Cancer Res. 2017;15(12):1644–55. https://doi.org/10.1158/1541-7786.MCR-17-0132

[150]

Grytli HH, Fagerland MW, Fossa SD, Tasken KA. Association between use of beta‐blockers and prostate cancer‐specific survival: a cohort study of 3561 prostate cancer patients with high‐risk or metastatic disease. Eur Urol. 2014;65(3):635–41. https://doi.org/10.1016/j.eururo.2013.01.007

[151]

Grytli HH, Fagerland MW, Fossa SD, Tasken KA, Haheim LL. Use of beta‐blockers is associated with prostate cancer‐specific survival in prostate cancer patients on androgen deprivation therapy. Prostate. 2013;73(3):250–60. https://doi.org/10.1002/pros.22564

[152]

Assayag J, Pollak MN, Azoulay L. Post‐diagnostic use of beta‐blockers and the risk of death in patients with prostate cancer. Eur J Cancer. 2014;50(16):2838–45. https://doi.org/10.1016/j.ejca.2014.08.006

[153]

Cardwell CR, Coleman HG, Murray LJ, O'Sullivan JM, Powe DG. Beta‐blocker usage and prostate cancer survival: a nested case‐control study in the UK Clinical Practice Research Datalink cohort. Cancer Epidemiol. 2014;38(3):279–85. https://doi.org/10.1016/j.canep.2014.03.011

[154]

Lu H, Liu X, Guo F, Tan S, Wang G, Liu H, et al. Impact of beta‐blockers on prostate cancer mortality: a meta‐analysis of 16,825 patients. OncoTargets Ther. 2015;8:985–90. https://doi.org/10.2147/OTT.S78836

[155]

Vaes N, Idris M, Boesmans W, Alves MM, Melotte V. Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol. 2022;19(12):768–84. https://doi.org/10.1038/s41575-022-00669-9

[156]

Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31(1):21–34. https://doi.org/10.1016/j.ccell.2016.11.005

[157]

Raufman JP, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, et al. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res. 2008;68(10):3573–8. https://doi.org/10.1158/0008-5472.CAN-07-6810

[158]

Cheng K, Zimniak P, Raufman JP. Transactivation of the epidermal growth factor receptor mediates cholinergic agonist‐induced proliferation of H508 human colon cancer cells. Cancer Res. 2003;63(20):6744–50. https://www.ncbi.nlm.nih.gov/pubmed/14583469

[159]

Yu H, Xia H, Tang Q, Xu H, Wei G, Chen Y, et al. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci Rep. 2017;7(1):40802. https://doi.org/10.1038/srep40802

[160]

Rabben HL, Andersen GT, Olsen MK, Overby A, Ianevski A, Kainov D, et al. Neural signaling modulates metabolism of gastric cancer. iScience. 2021;24(2):102091. https://doi.org/10.1016/j.isci.2021.102091

[161]

Rademakers G, Vaes N, Schonkeren S, Koch A, Sharkey KA, Melotte V. The role of enteric neurons in the development and progression of colorectal cancer. Biochim Biophys Acta Rev Cancer. 2017;1868(2):420–34. https://doi.org/10.1016/j.bbcan.2017.08.003

[162]

Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol. 2016;13(9):517–28. https://doi.org/10.1038/nrgastro.2016.107

[163]

Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev. 2023;103(2):1487–564. https://doi.org/10.1152/physrev.00018.2022

[164]

Vaes N, Schonkeren SL, Rademakers G, Holland AM, Koch A, Gijbels MJ, et al. Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Rep. 2021;22(6):e51913. https://doi.org/10.15252/embr.202051913

[165]

Zhu P, Lu T, Chen Z, Liu B, Fan D, Li C, et al. 5‐hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self‐renewal and tumorigenesis. Neuron. 2022;110(14):2268–2282.e4. https://doi.org/10.1016/j.neuron.2022.04.024

[166]

Niu Q, Li L, Zhang C, Qi C, He Q, Zhu Y. Expression of 5‐HT relates to stem cell marker LGR5 in patients with gastritis and gastric cancer. Dig Dis Sci. 2023;68(5):1864–72. https://doi.org/10.1007/s10620-022-07772-6

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 May 2023
Accepted: 16 June 2023
Published: 23 July 2023
Issue date: September 2023

Copyright

© 2023 The Authors. Tsinghua University Press.

Acknowledgements

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (81972651 and 82172698) and the High‐level Hospital Construction Project (DFJHBF202102).

Rights and permissions

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return