Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Autoimmune liver diseases (ALDs) are chronic inflammatory hepatobiliary diseases in which the autoimmune responses directed against liver tissue result in inflammation and tissue damage. There are several types of ALDs, including autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, immunoglobulin G4‐related sclerosing cholangitis, and overlap syndromes. Metabolism and epigenetics are both critical components of the development and progression of ALDs. Immunometabolism addresses how metabolic processes influence immune cell development, fate and behavior, and how immune responses impact metabolism. In the context of immunity, epigenetics involves regulating gene expression without altering the DNA sequence. Epigenetic modifications can ultimately result in changes in the immunophenotype. The interplay between the immune system, metabolism, and epigenetic factors is highly complex. A better understanding of this interplay and the regulatory mechanisms involved is crucial to uncover the disease pathogenesis of ALDs and exploring novel therapeutic options. This article provides a comprehensive review of the dysregulation of immunometabolism and epigenetics, as well as the multilevel regulatory mechanisms, underlying the autoimmunity in ALDs.
Carbone M, Neuberger JM. Autoimmune liver disease, autoimmunity and liver transplantation. J Hepatol. 2014;60(1):210–23. https://doi.org/10.1016/j.jhep.2013.09.020
Washington MK. Autoimmune liver disease: overlap and outliers. Mod Pathol Offic J United States and Can Acad Pathol. 2007;20(Suppl 1):S15–30. https://doi.org/10.1038/modpathol.3800684
Zen Y, Harada K, Sasaki M, Sato Y, Tsuneyama K, Haratake J, et al. IgG4‐related sclerosing cholangitis with and without hepatic inflammatory pseudotumor, and sclerosing pancreatitis‐associated sclerosing cholangitis: do they belong to a spectrum of sclerosing pancreatitis? Am J Surg Pathol. 2004;28(9):1193–203. https://doi.org/10.1097/01.pas.0000136449.37936.6c
Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177–97. https://doi.org/10.1002/cphy.c130024
Yaqoob P. Fatty acids as gatekeepers of immune cell regulation. Trends Immunol. 2003;24(12):639–45. https://doi.org/10.1016/j.it.2003.10.002
Lawless SJ, Kedia‐Mehta N, Walls JF, McGarrigle R, Convery O, Sinclair LV, et al. Glucose represses dendritic cell‐induced T cell responses. Nat Commun. 2017;8(1):15620. https://doi.org/10.1038/ncomms15620
Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68. https://doi.org/10.1038/nbt.1685
Wang Q, Selmi C, Zhou X, Qiu D, Li Z, Miao Q, et al. Epigenetic considerations and the clinical reevaluation of the overlap syndrome between primary biliary cirrhosis and autoimmune hepatitis. J Autoimmun. 2013;41:140–5. https://doi.org/10.1016/j.jaut.2012.10.004
Lleo A, Zhang W, Zhao M, Tan Y, Bernuzzi F, Zhu B, et al. DNA methylation profiling of the X chromosome reveals an aberrant demethylation on CXCR3 promoter in primary biliary cirrhosis. Clin Epigenet. 2015;7(1):61. https://doi.org/10.1186/s13148-015-0098-9
Mitchell MM, Lleo A, Zammataro L, Mayo MJ, Invernizzi P, Bach N, et al. Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics. 2011;6(1):95–102. https://doi.org/10.4161/epi.6.1.13405
Selmi C, Mayo MJ, Bach N, Ishibashi H, Invernizzi P, Gish RG, et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology. 2004;127(2):485–92. https://doi.org/10.1053/j.gastro.2004.05.005
Etchegaray JP, Mostoslavsky R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol Cell. 2016;62(5):695–711. https://doi.org/10.1016/j.molcel.2016.05.029
Sasse D, Spornitz UM, Maly IP. Liver architecture. Enzyme. 1992;46(1‐3):8–32. https://doi.org/10.1159/000468776
Abdel‐Misih SR, Bloomston M. Liver anatomy. Surg Clin. 2010;90(4):643–53. https://doi.org/10.1016/j.suc.2010.04.017
Lautt WW, Greenway CV. Conceptual review of the hepatic vascular bed. Hepatology. 1987;7(5):952–63. https://doi.org/10.1002/hep.1840070527
Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen‐presenting cells and regulatory immune cells. Cell Mol Immunol. 2016;13(3):277–92. https://doi.org/10.1038/cmi.2015.112
Tiegs G, Lohse AW. Immune tolerance: what is unique about the liver. J Autoimmun. 2010;34(1):1–6. https://doi.org/10.1016/j.jaut.2009.08.008
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol. 2021;22(9):608–24. https://doi.org/10.1038/s41580-021-00373-7
Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol. 2018;36(1):247–77. https://doi.org/10.1146/annurev-immunol-051116-052415
Bonnardel J, T'Jonck W, Gaublomme D, Browaeys R, Scott CL, Martens L, et al. Stellate cells, hepatocytes, and endothelial cells imprint the kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity. 2019;51(4):638–54.e9. https://doi.org/10.1016/j.immuni.2019.08.017
Mokdad AA, Lopez AD, Shahraz S, Lozano R, Mokdad AH, Stanaway J, et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med. 2014;12(1):145. https://doi.org/10.1186/s12916-014-0145-y
Asrani SK, Larson JJ, Yawn B, Therneau TM, Kim WR. Underestimation of liver‐related mortality in the United States. Gastroenterology. 2013;145(2):375–82. e1‐2. https://doi.org/10.1053/j.gastro.2013.04.005
Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–71. https://doi.org/10.1016/j.jhep.2018.09.014
Williams R. Global challenges in liver disease. Hepatology. 2006;44(3):521–6. https://doi.org/10.1002/hep.21347
Trivedi PJ, Hirschfield GM. Recent advances in clinical practice: epidemiology of autoimmune liver diseases. Gut. 2021;70(10):1989–2003. https://doi.org/10.1136/gutjnl-2020-322362
Carey EJ, Ali AH, Lindor KD. Primary biliary cirrhosis. Lancet. 2015;386(10003):1565–75. https://doi.org/10.1016/s0140-6736(15)00154-3
Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis ‐ a comprehensive review. J Hepatol. 2017;67(6):1298–323. https://doi.org/10.1016/j.jhep.2017.07.022
Björnsson E, Chari ST, Smyrk TC, Lindor K. Immunoglobulin G4 associated cholangitis: description of an emerging clinical entity based on review of the literature. Hepatology. 2007;45(6):1547–54. https://doi.org/10.1002/hep.21685
Rust C, Beuers U. Overlap syndromes among autoimmune liver diseases. World J Gastroenterol. 2008;14(21):3368–73. https://doi.org/10.3748/wjg.14.3368
Czaja AJ. Autoimmune hepatitis: focusing on treatments other than steroids. Canadian J Gastroenterol J canadien de gastroenterologie. 2012;26(9):615–20. https://doi.org/10.1155/2012/512132
Mitchell SA, Bansi DS, Hunt N, Von Bergmann K, Fleming KA, Chapman RW. A preliminary trial of high‐dose ursodeoxycholic acid in primary sclerosing cholangitis. Gastroenterology. 2001;121(4):900–7. https://doi.org/10.1053/gast.2001.27965
Oseini AM, Chaiteerakij R, Shire AM, Ghazale A, Kaiya J, Moser CD, et al. Utility of serum immunoglobulin G4 in distinguishing immunoglobulin G4‐associated cholangitis from cholangiocarcinoma. Hepatology. 2011;54(3):940–8. https://doi.org/10.1002/hep.24487
Liberal R, Zen Y, Mieli‐Vergani G, Vergani D. Liver transplantation and autoimmune liver diseases. Liver Transplant: Offi Publ Am Assoc Stud Liver Dis Int Liver Transplant Soc. 2013;19(10):1065–77. https://doi.org/10.1002/lt.23704
Bogdanos DP, Mieli‐Vergani G, Vergani D. Virus, liver and autoimmunity. Dig Liver Dis: Off J Italian Soc Gastroenterol Italian Assoc Stud Liver. 2000;32(5):440–6. https://doi.org/10.1016/s1590-8658(00)80266-2
Sánchez B, Hevia A, González S, Margolles A. Interaction of intestinal microorganisms with the human host in the framework of autoimmune diseases. Front Immunol. 2015;6:594. https://doi.org/10.3389/fimmu.2015.00594
Couto CA, Bittencourt PL, Porta G, Abrantes‐Lemos CP, Carrilho FJ, Guardia BD, et al. Antismooth muscle and antiactin antibodies are indirect markers of histological and biochemical activity of autoimmune hepatitis. Hepatology. 2014;59(2):592–600. https://doi.org/10.1002/hep.26666
Sebode M, Weiler‐Normann C, Liwinski T, Schramm C. Autoantibodies in autoimmune liver disease‐clinical and diagnostic relevance. Front Immunol. 2018;9:609. https://doi.org/10.3389/fimmu.2018.00609
Rowley MJ, Maeda T, Mackay IR, Loveland BE, McMullen GL, Tribbick G, et al. Differing epitope selection of experimentally‐induced and natural antibodies to a disease‐specific autoantigen, the E2 subunit of pyruvate dehydrogenase complex (PDC‐E2). Int Immunol. 1992;4(11):1245–53. https://doi.org/10.1093/intimm/4.11.1245
Berglin L, Björkström NK, Bergquist A. Primary sclerosing cholangitis is associated with autoreactive IgA antibodies against biliary epithelial cells. Scand J Gastroenterol. 2013;48(6):719–28. https://doi.org/10.3109/00365521.2013.786131
Tornai T, Tornai D, Sipeki N, Tornai I, Alsulaimani R, Fechner K, et al. Loss of tolerance to gut immunity protein, glycoprotein 2 (GP2) is associated with progressive disease course in primary sclerosing cholangitis. Sci Rep. 2018;8(1):399. https://doi.org/10.1038/s41598-017-18622-1
Stone JH, Zen Y, Deshpande V. IgG4‐related disease. N Engl J Med. 2012;366(6):539–51. https://doi.org/10.1056/NEJMra1104650
Fournié GJ, Cautain B, Xystrakis E, Damoiseaux J, Mas M, Lagrange D, et al. Cellular and genetic factors involved in the difference between Brown Norway and Lewis rats to develop respectively type‐2 and type‐1 immune‐mediated diseases. Immunol Rev. 2001;184(1):145–60. https://doi.org/10.1034/j.1600-065x.2001.1840114.x
Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun. 2016;66:60–75. https://doi.org/10.1016/j.jaut.2015.08.020
Franco A, Barnaba V, Natali P, Balsano C, Musca A, Balsano F. Expression of class Ⅰ and class Ⅱ major histocompatibility complex antigens on human hepatocytes. Hepatology. 1988;8(3):449–54. https://doi.org/10.1002/hep.1840080302
Spengler U, Pape GR, Hoffmann RM, Johnson JP, Eisenburg J, Paumgartner G, et al. Differential expression of MHC class Ⅱ subregion products on bile duct epithelial cells and hepatocytes in patients with primary biliary cirrhosis. Hepatology. 1988;8(3):459–62. https://doi.org/10.1002/hep.1840080304
Spellberg B, Edwards JE, Jr. Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis: Offi Publ Infect Dis Soc America. 2001;32(1):76–102. https://doi.org/10.1086/317537
Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, et al. Generation of pathogenic T(H)17 cells in the absence of TGF‐β signalling. Nature. 2010;467(7318):967–71. https://doi.org/10.1038/nature09447
Baier JL, Mattner J. Mechanisms of autoimmune liver disease. Discov Med. 2014;18(100):255–63.
Drugarin D, Negru S, Koreck A, Zosin I, Cristea C. The pattern of a T(H)1 cytokine in autoimmune thyroiditis. Immunol Lett. 2000;71(2):73–7. https://doi.org/10.1016/s0165-2478(99)00156-x
Lund FE. Cytokine‐producing B lymphocytes‐key regulators of immunity. Curr Opin Immunol. 2008;20(3):332–8. https://doi.org/10.1016/j.coi.2008.03.003
Longhi MS, Ma Y, Mieli‐Vergani G, Vergani D. Aetiopathogenesis of autoimmune hepatitis. J Autoimmun. 2010;34(1):7–14. https://doi.org/10.1016/j.jaut.2009.08.010
Wang L, Sun Y, Zhang Z, Jia Y, Zou Z, Ding J, et al. CXCR5+ CD4+ T follicular helper cells participate in the pathogenesis of primary biliary cirrhosis. Hepatology. 2015;61(2):627–38. https://doi.org/10.1002/hep.27306
Moritoki Y, Lian ZX, Ohsugi Y, Ueno Y, Gershwin ME. B cells and autoimmune liver diseases. Autoimmun Rev. 2006;5(7):449–57. https://doi.org/10.1016/j.autrev.2006.02.006
Goverman JM. Immune tolerance in multiple sclerosis. Immunol Rev. 2011;241(1):228–40. https://doi.org/10.1111/j.1600-065X.2011.01016.x
Liberal R, Grant CR, Longhi MS, Mieli‐Vergani G, Vergani D. Regulatory T cells: mechanisms of suppression and impairment in autoimmune liver disease. IUBMB Life. 2015;67(2):88–97. https://doi.org/10.1002/iub.1349
Cripps JG, Gorham JD. MDSC in autoimmunity. Int Immunopharm. 2011;11(7):789–93. https://doi.org/10.1016/j.intimp.2011.01.026
O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65. https://doi.org/10.1038/nri.2016.70
Lu Y, Liu H, Bi Y, Yang H, Li Y, Wang J, et al. Glucocorticoid receptor promotes the function of myeloid‐derived suppressor cells by suppressing HIF1α‐dependent glycolysis. Cell Mol Immunol. 2018;15(6):618–29. https://doi.org/10.1038/cmi.2017.5
Yang F, Zhou L, Shen Y, Zhao S, Zheng Y, Men R, et al. Metabolic heterogeneity caused by HLA‐DRB1*04:05 and protective effect of inosine on autoimmune hepatitis. Front Immunol. 2022;13:982186. https://doi.org/10.3389/fimmu.2022.982186
Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, et al. A placebo‐controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016;375(7):631–43. https://doi.org/10.1056/NEJMoa1509840
Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology. 2015;148(4):751–61.e8. https://doi.org/10.1053/j.gastro.2014.12.005
Bowlus CL. Obeticholic acid for the treatment of primary biliary cholangitis in adult patients: clinical utility and patient selection. Hepatic Med. 2016;8:89–95. https://doi.org/10.2147/hmer.S91709
Zhu C, Boucheron N, Müller AC, Májek P, Claudel T, Halilbasic E, et al. 24‐Norursodeoxycholic acid reshapes immunometabolism in CD8(+) T cells and alleviates hepatic inflammation. J Hepatol. 2021;75(5):1164–76. https://doi.org/10.1016/j.jhep.2021.06.036
Zhu C, Boucheron N, Rica R, Stolz V, Halilbasic E, Claudel T, et al. 24‐Nor‐ursodeoxycholic acid counteracts TH17/Treg imbalance and ameliorates intestinal inflammation by restricting glutaminolysis in differentiating TH17 cells. bioRxiv; 2022.
Zhang M, Li Q, Zhou C, Zhao Y, Li R, Zhang Y. Demethyleneberberine attenuates concanavalin A‐induced autoimmune hepatitis in mice through inhibition of NF‐κB and MAPK signaling. Int Immunopharm. 2020;80:106137. https://doi.org/10.1016/j.intimp.2019.106137
Zhao L, Tang Y, You Z, Wang Q, Liang S, Han X, et al. Interleukin‐17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin‐6 expression. PLoS One. 2011;6(4):e18909. https://doi.org/10.1371/journal.pone.0018909
Odin JA, Huebert RC, Casciola‐Rosen L, LaRusso NF, Rosen A. Bcl‐2‐dependent oxidation of pyruvate dehydrogenase‐E2, a primary biliary cirrhosis autoantigen, during apoptosis. J Clin Investig. 2001;108(2):223–32. https://doi.org/10.1172/jci10716
Liao J, Wang X, Bi Y, Shen B, Shao K, Yang H, et al. Dexamethasone potentiates myeloid‐derived suppressor cell function in prolonging allograft survival through nitric oxide. J Leukoc Biol. 2014;96(5):675–84. https://doi.org/10.1189/jlb.2HI1113-611RR
Lim YS, Oh HB, Choi SE, Kwon OJ, Heo YS, Lee HC, et al. Susceptibility to type 1 autoimmune hepatitis is associated with shared amino acid sequences at positions 70‐74 of the HLA‐DRB1 molecule. J Hepatol. 2008;48(1):133–9. https://doi.org/10.1016/j.jhep.2007.08.019
Floreani A, Restrepo‐Jiménez P, Secchi MF, De Martin S, Leung PSC, Krawitt E, et al. Etiopathogenesis of autoimmune hepatitis. J Autoimmun. 2018;95:133–43. https://doi.org/10.1016/j.jaut.2018.10.020
Umemura T, Katsuyama Y, Yoshizawa K, Kimura T, Joshita S, Komatsu M, et al. Human leukocyte antigen class Ⅱ haplotypes affect clinical characteristics and progression of type 1 autoimmune hepatitis in Japan. PLoS One. 2014;9(6):e100565. https://doi.org/10.1371/journal.pone.0100565
Ma Y, Su H, Yuksel M, Longhi MS, McPhail MJ, Wang P, et al. Human leukocyte antigen profile predicts severity of autoimmune liver disease in children of European ancestry. Hepatology. 2021;74(4):2032–46. https://doi.org/10.1002/hep.31893
Zhu Y, Wang X, Zhu L, Tu Y, Chen W, Gong L, et al. Lactobacillus rhamnosus GG combined with inosine ameliorates alcohol‐induced liver injury through regulation of intestinal barrier and Treg/Th1 cells. Toxicol Appl Pharmacol. 2022;439:115923. https://doi.org/10.1016/j.taap.2022.115923
Guo W, Xiang Q, Mao B, Tang X, Cui S, Li X, et al. Protective effects of microbiome‐derived inosine on lipopolysaccharide‐induced acute liver damage and inflammation in mice via mediating the TLR4/NF‐κB pathway. J Agric Food Chem. 2021;69(27):7619–28. https://doi.org/10.1021/acs.jafc.1c01781
Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity. 2022;55(1):14–30. https://doi.org/10.1016/j.immuni.2021.12.012
Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 2014;11(1):55–67. https://doi.org/10.1038/nrgastro.2013.151
Li T, Chiang JYL. Bile acid‐based therapies for non‐alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr. 2020;9(2):152–69. https://doi.org/10.21037/hbsn.2019.09.03
Tully DC, Rucker PV, Chianelli D, Williams J, Vidal A, Alper PB, et al. Discovery of tropifexor (LJN452), a highly potent non‐bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH). J Med Chem. 2017;60(24):9960–73. https://doi.org/10.1021/acs.jmedchem.7b00907
Schramm C, Wedemeyer H, Mason A, Hirschfield GM, Levy C, Kowdley KV, et al. Farnesoid X receptor agonist tropifexor attenuates cholestasis in a randomised trial in patients with primary biliary cholangitis. JHEP Rep Innovat Hepatol. 2022;4(11):100544. https://doi.org/10.1016/j.jhepr.2022.100544
Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen‐activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transd. 2011;2011:792639–6. https://doi.org/10.1155/2011/792639
Yang Z, Song L, Huang C. Gadd45 proteins as critical signal transducers linking NF‐kappaB to MAPK cascades. Curr Cancer Drug Targets. 2009;9(8):915–30. https://doi.org/10.2174/156800909790192383
Ma X, Jia YT, Qiu DK. Inhibition of p38 mitogen‐activated protein kinase attenuates experimental autoimmune hepatitis: involvement of nuclear factor kappa B. World J Gastroenterol. 2007;13(31):4249–54. https://doi.org/10.3748/wjg.v13.i31.4249
Bae HR, Choi MS, Kim S, Young HA, Gershwin ME, Jeon SM, et al. IFNγ is a key link between obesity and Th1‐mediated AutoImmune diseases. Int J Mol Sci. 2020;22(1):208. https://doi.org/10.3390/ijms22010208
Harada K, Ozaki S, Gershwin ME, Nakanuma Y. Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis. Hepatology. 1997;26(6):1399–405. https://doi.org/10.1002/hep.510260604
Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl‐2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993;75(2):241–51. https://doi.org/10.1016/0092-8674(93)80066-n
Tsujimoto Y, Shimizu S, Eguchi Y, Kamiike W, Matsuda H. Bcl‐2 and Bcl‐xL block apoptosis as well as necrosis: possible involvement of common mediators in apoptotic and necrotic signal transduction pathways. Leukemia. 1997;11(Suppl 3):380–2.
Charlotte F, L'Herminé A, Martin N, Geleyn Y, Nollet M, Gaulard P, et al. Immunohistochemical detection of bcl‐2 protein in normal and pathological human liver. Am J Pathol. 1994;144(3):460–5.
Meredith MJ, Cusick CL, Soltaninassab S, Sekhar KS, Lu S, Freeman ML. Expression of Bcl‐2 increases intracellular glutathione by inhibiting methionine‐dependent GSH efflux. Biochem Biophys Res Commun. 1998;248(3):458–63. https://doi.org/10.1006/bbrc.1998.8998
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36. https://doi.org/10.1093/carcin/bgp220
Selmi C, Cavaciocchi F, Lleo A, Cheroni C, De Francesco R, Lombardi SA, et al. Genome‐wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Front Immunol. 2014;5:128. https://doi.org/10.3389/fimmu.2014.00128
Lleo A, Liao J, Invernizzi P, Zhao M, Bernuzzi F, Ma L, et al. Immunoglobulin M levels inversely correlate with CD40 ligand promoter methylation in patients with primary biliary cirrhosis. Hepatology. 2012;55(1):153–60. https://doi.org/10.1002/hep.24630
Zachou K, Arvaniti P, Lyberopoulou A, Sevdali E, Speletas M, Ioannou M, et al. Altered DNA methylation pattern characterizes the peripheral immune cells of patients with autoimmune hepatitis. Liver Int Off J Int Ass Stud Liver. 2022;42(6):1355–68. https://doi.org/10.1111/liv.15176
Chen Y, Hua X, Huang B, Karsten S, You Z, Li B, et al. MutT homolog 1 inhibitor karonudib attenuates autoimmune hepatitis by inhibiting DNA repair in activated T cells. Hepatol Comm. 2022;6(5):1016–31. https://doi.org/10.1002/hep4.1862
Hu Z, Huang Y, Liu Y, Sun Y, Zhou Y, Gu M, et al. β‐Arrestin 1 modulates functions of autoimmune T cells from primary biliary cirrhosis patients. J Clin Immunol. 2011;31(3):346–55. https://doi.org/10.1007/s10875-010-9492-4
Lleo A, Jepsen P, Morenghi E, Carbone M, Moroni L, Battezzati PM, et al. Evolving trends in female to male incidence and male mortality of primary biliary cholangitis. Sci Rep. 2016;6(1):25906. https://doi.org/10.1038/srep25906
Miozzo M, Selmi C, Gentilin B, Grati FR, Sirchia S, Oertelt S, et al. Preferential X chromosome loss but random inactivation characterize primary biliary cirrhosis. Hepatology. 2007;46(2):456–62. https://doi.org/10.1002/hep.21696
McNally JP, Millen SH, Chaturvedi V, Lakes N, Terrell CE, Elfers EE, et al. Manipulating DNA damage‐response signaling for the treatment of immune‐mediated diseases. Proc Natl Acad Sci USA. 2017;114(24):E4782–e91. https://doi.org/10.1073/pnas.1703683114
Sasaki M, Ikeda H, Yamaguchi J, Nakada S, Nakanuma Y. Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology. 2008;48(1):186–95. https://doi.org/10.1002/hep.22348
Jaiswal M, LaRusso NF, Shapiro RA, Billiar TR, Gores GJ. Nitric oxide‐mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology. 2001;120(1):190–9. https://doi.org/10.1053/gast.2001.20875
Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, et al. A nuclear function of beta‐arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell. 2005;123(5):833–47. https://doi.org/10.1016/j.cell.2005.09.011
Fan H, Luttrell LM, Tempel GE, Senn JJ, Halushka PV, Cook JA. Beta‐arrestins 1 and 2 differentially regulate LPS‐induced signaling and pro‐inflammatory gene expression. Mol Immunol. 2007;44(12):3092–9. https://doi.org/10.1016/j.molimm.2007.02.009
Ellinghaus D, Folseraas T, Holm K, Ellinghaus E, Melum E, Balschun T, et al. Genome‐wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology. 2013;58(3):1074–83. https://doi.org/10.1002/hep.25977
Rajagopal S, Rajagopal K, Lefkowitz RJ. Teaching old receptors new tricks: biasing seven‐transmembrane receptors. Nat Rev Drug Discov. 2010;9(5):373–86. https://doi.org/10.1038/nrd3024
Schneditz G, Elias JE, Pagano E, Zaeem Cader M, Saveljeva S, Long K, et al. GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Sci Signal. 2019;12(562). https://doi.org/10.1126/scisignal.aau9048
Li A, Song W, Qian J, Li Y, He J, Zhang Q, et al. MiR‐122 modulates type Ⅰ interferon expression through blocking suppressor of cytokine signaling 1. Int J Biochem Cell Biol. 2013;45(4):858–65. https://doi.org/10.1016/j.biocel.2013.01.008
Banales JM, Sáez E, Uriz M, Sarvide S, Urribarri AD, Splinter P, et al. Up‐regulation of microRNA 506 leads to decreased Cl‐/HCO3‐ anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology. 2012;56(2):687–97. https://doi.org/10.1002/hep.25691
Beyazit Y, Kocak E, Tanoglu A, Kekilli M. Oxidative stress might play a role in low serum vitamin D associated liver fibrosis among patients with autoimmune hepatitis. Dig Dis Sci. 2015;60(4):1106–8. https://doi.org/10.1007/s10620-015-3526-y
Hu XD, Jiang SL, Liu CH, Hu YY, Liu C, Sun MY, et al. Preventive effects of 1,25‐(OH)2VD3 against ConA‐induced mouse hepatitis through promoting vitamin D receptor gene expression. Acta Pharmacol Sin. 2010;31(6):703–8. https://doi.org/10.1038/aps.2010.53
Baran DT, Milne ML. 1,25 Dihydroxyvitamin D increases hepatocyte cytosolic calcium levels. A potential regulator of vitamin D‐25‐hydroxylase. J Clin Investig. 1986;77(5):1622–6. https://doi.org/10.1172/jci112478
Rixon RH, Isaacs RJ, Whitfield JF. Control of DNA polymerase‐alpha activity in regenerating rat liver by calcium and 1 alpha,25(OH)2D3. J Cell Physiol. 1989;139(2):354–60. https://doi.org/10.1002/jcp.1041390218
Huang B, Lyu Z, Qian Q, Chen Y, Zhang J, Li B, et al. NUDT1 promotes the accumulation and longevity of CD103+ TRM cells in primary biliary cholangitis. J Hepatol. 2022;77(5):1311–24. https://doi.org/10.1016/j.jhep.2022.06.014
Chen J, Liu W, Zhu W. Foxp3⁺ Treg cells are associated with pathological process of autoimmune hepatitis by activating methylation modification in autoimmune hepatitis patients. Med Sci Monit. 2019;25:6204–12. https://doi.org/10.12659/msm.915408
Oo YH, Ackrill S, Cole R, Jenkins L, Anderson P, Jeffery HC, et al. Liver homing of clinical grade Tregs after therapeutic infusion in patients with autoimmune hepatitis. JHEP Rep Inn Hepatol. 2019;1(4):286–96. https://doi.org/10.1016/j.jhepr.2019.08.001
Callegari E, Gramantieri L, Domenicali M, D'Abundo L, Sabbioni S, Negrini M. MicroRNAs in liver cancer: a model for investigating pathogenesis and novel therapeutic approaches. Cell Death Differ. 2015;22(1):46–57. https://doi.org/10.1038/cdd.2014.136
Migita K, Komori A, Kozuru H, Jiuchi Y, Nakamura M, Yasunami M, et al. Circulating microRNA profiles in patients with type‐1 autoimmune hepatitis. PLoS One. 2015;10(11):e0136908. https://doi.org/10.1371/journal.pone.0136908
Goldschmidt I, Thum T, Baumann U. Circulating miR‐21 and miR‐29a as markers of disease severity and etiology in cholestatic pediatric liver disease. J Clin Med. 2016;5(3):28. https://doi.org/10.3390/jcm5030028
Xia G, Wu S, Wang X, Fu M. Inhibition of microRNA‐155 attenuates concanavalin‐A‐induced autoimmune hepatitis by regulating Treg/Th17 cell differentiation. Can J Physiol Pharmacol. 2018;96(12):1293–300. https://doi.org/10.1139/cjpp-2018-0467
Tomiyama T, Yang GX, Zhao M, Zhang W, Tanaka H, Wang J, et al. The modulation of co‐stimulatory molecules by circulating exosomes in primary biliary cirrhosis. Cell Mol Immunol. 2017;14(3):276–84. https://doi.org/10.1038/cmi.2015.86
Rosenberger CM, Podyminogin RL, Navarro G, Zhao GW, Askovich PS, Weiss MJ, et al. miR‐451 regulates dendritic cell cytokine responses to influenza infection. J Immunol. 2012;189(12):5965–75. https://doi.org/10.4049/jimmunol.1201437
Smigielska‐Czepiel K, van den Berg A, Jellema P, van der Lei RJ, Bijzet J, Kluiver J, et al. Comprehensive analysis of miRNA expression in T‐cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Gene Immun. 2014;15(2):115–25. https://doi.org/10.1038/gene.2013.69
Sato K, Yoshimura A, Kaneko T, Ukai T, Ozaki Y, Nakamura H, et al. A single nucleotide polymorphism in 3'‐untranslated region contributes to the regulation of Toll‐like receptor 4 translation. J Biol Chem. 2012;287(30):25163–72. https://doi.org/10.1074/jbc.M111.338426
Padgett KA, Lan RY, Leung PC, Lleo A, Dawson K, Pfeiff J, et al. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J Autoimmun. 2009;32(3‐4):246–53. https://doi.org/10.1016/j.jaut.2009.02.022
Fickert P, Trauner M. When lightning strikes twice: the plot thickens for a dual role of the anion exchanger 2 (AE2/SLC4A2) in the pathogenesis and treatment of primary biliary cirrhosis. J Hepatol. 2009;50(3):633–5. https://doi.org/10.1016/j.jhep.2008.12.006
Prieto J, Qian C, García N, Díez J, Medina JF. Abnormal expression of anion exchanger genes in primary biliary cirrhosis. Gastroenterology. 1993;105(2):572–8. https://doi.org/10.1016/0016-5085(93)90735-u
Banales JM, Sarvide S, Recalde S, Ferrer A, Uriarte I, et al. Ae2a,b‐deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology. 2008;134(5):1482–93. https://doi.org/10.1053/j.gastro.2008.02.020
Bernuzzi F, Marabita F, Lleo A, Carbone M, Mirolo M, Marzioni M, et al. Serum microRNAs as novel biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Clin Exp Immunol. 2016;185(1):61–71. https://doi.org/10.1111/cei.12776
DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689s–96s. https://doi.org/10.1093/ajcn/80.6.1689S
Saron ML, Godoy HT, Hessel G. Nutritional status of patients with biliary atresia and autoimmune hepatitis related to serum levels of vitamins A, D and E. Arq Gastroenterol. 2009;46(1):62–8. https://doi.org/10.1590/s0004-28032009000100016
Smyk DS, Orfanidou T, Invernizzi P, Bogdanos DP, Lenzi M. Vitamin D in autoimmune liver disease. Clin Res Hepatol Gastroenterol. 2013;37(5):535–45. https://doi.org/10.1016/j.clinre.2013.05.016
Luong KV, Nguyen LT. The role of vitamin d in autoimmune hepatitis. J Clin Med Res. 2013;5(6):407–15. https://doi.org/10.4021/jocmr1505w
Efe C, Kav T, Aydin C, Cengiz M, Imga NN, Purnak T, et al. Low serum vitamin D levels are associated with severe histological features and poor response to therapy in patients with autoimmune hepatitis. Dig Dis Sci. 2014;59(12):3035–42. https://doi.org/10.1007/s10620-014-3267-3
Agmon‐Levin N, Kopilov R, Selmi C, Nussinovitch U, Sanchez‐Castanon M, Lopez‐Hoyos M, et al. Vitamin D in primary biliary cirrhosis, a plausible marker of advanced disease. Immunol Res. 2015;61(1‐2):141–6. https://doi.org/10.1007/s12026-014-8594-0
Ebadi M, Bhanji RA, Mazurak VC, Lytvyak E, Mason A, Czaja AJ, et al. Severe vitamin D deficiency is a prognostic biomarker in autoimmune hepatitis. Aliment Pharmacol Therapeut. 2019;49(2):173–82. https://doi.org/10.1111/apt.15029
Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology. 2002;35(1):126–31. https://doi.org/10.1053/jhep.2002.30084
Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli‐Vergani G, Vergani D. Impairment of CD4(+)CD25(+) regulatory T‐cells in autoimmune liver disease. J Hepatol. 2004;41(1):31–7. https://doi.org/10.1016/j.jhep.2004.03.008
Huang C, Shen Y, Shen M, Fan X, Men R, Ye T, et al. Glucose metabolism reprogramming of regulatory T cells in concanavalin A‐induced hepatitis. Front Pharmacol. 2021;12:726128. https://doi.org/10.3389/fphar.2021.726128
Viollet B, Guigas B, Leclerc J, Hébrard S, Lantier L, Mounier R, et al. AMP‐activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol. 2009;196(1):81–98. https://doi.org/10.1111/j.1748-1716.2009.01970.x
Zhu H, Liu Z, An J, Zhang M, Qiu Y, Zou MH. Activation of AMPKα1 is essential for regulatory T cell function and autoimmune liver disease prevention. Cell Mol Immunol. 2021;18(12):2609–17. https://doi.org/10.1038/s41423-021-00790-w
Wang Y, Zhou L, Li Y, Guo L, Zhou Z, Xie H, et al. The effects of berberine on concanavalin A‐induced autoimmune hepatitis (AIH) in mice and the adenosine 5'‐monophosphate (AMP)‐Activated protein kinase (AMPK) pathway. Med Sci Mon Int Med J Exp Clin Res. 2017;23:6150–61. https://doi.org/10.12659/msm.907377
Dyson JK, Webb G, Hirschfield GM, Lohse A, Beuers U, Lindor K, et al. Unmet clinical need in autoimmune liver diseases. J Hepatol. 2015;62(1):208–18. https://doi.org/10.1016/j.jhep.2014.09.010
Invernizzi P. Geoepidemiology of autoimmune liver diseases. J Autoimmun. 2010;34(3):J300–J6. https://doi.org/10.1016/j.jaut.2009.12.002
Tanaka A, Tazuma S, Okazaki K, Tsubouchi H, Inui K, Takikawa H. Nationwide survey for primary sclerosing cholangitis and IgG4‐related sclerosing cholangitis in Japan. J Hepatobiliary Pancreat Sci. 2014;21(1):43–50. https://doi.org/10.1002/jhbp.50
Kremer AE, van Dijk R, Leckie P, Schaap FG, Kuiper EM, Mettang T, et al. Serum autotaxin is increased in pruritus of cholestasis, but not of other origin, and responds to therapeutic interventions. Hepatology. 2012;56(4):1391–400. https://doi.org/10.1002/hep.25748
Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022;13(12):877–919. https://doi.org/10.1007/s13238-021-00846-7
Zhang Y, Leung DY, Richers BN, Liu Y, Remigio LK, Riches DW, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase‐1. J Immunol. 2012;188. 2127–35. https://doi.org/10.4049/jimmunol.1102412
Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, Liu Y. Restraint of proinflammatory cytokine biosynthesis by mitogen‐activated protein kinase phosphatase‐1 in lipopolysaccharide‐stimulated macrophages. J Immunol. 2002;169(11):6408–16. https://doi.org/10.4049/jimmunol.169.11.6408
Sun C, Qi R, Wang L, Yan J, Wang Y. p38 MAPK regulates calcium signal‐mediated lipid accumulation through changing VDR expression in primary preadipocytes of mice. Mol Biol Rep. 2012;39(3):3179–84. https://doi.org/10.1007/s11033-011-1084-8
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.