Journal Home > Volume 1 , Issue 2

Autoimmune liver diseases (ALDs) are chronic inflammatory hepatobiliary diseases in which the autoimmune responses directed against liver tissue result in inflammation and tissue damage. There are several types of ALDs, including autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, immunoglobulin G4‐related sclerosing cholangitis, and overlap syndromes. Metabolism and epigenetics are both critical components of the development and progression of ALDs. Immunometabolism addresses how metabolic processes influence immune cell development, fate and behavior, and how immune responses impact metabolism. In the context of immunity, epigenetics involves regulating gene expression without altering the DNA sequence. Epigenetic modifications can ultimately result in changes in the immunophenotype. The interplay between the immune system, metabolism, and epigenetic factors is highly complex. A better understanding of this interplay and the regulatory mechanisms involved is crucial to uncover the disease pathogenesis of ALDs and exploring novel therapeutic options. This article provides a comprehensive review of the dysregulation of immunometabolism and epigenetics, as well as the multilevel regulatory mechanisms, underlying the autoimmunity in ALDs.


menu
Abstract
Full text
Outline
About this article

Complex interplay between the immune system, metabolism, and epigenetic factors in autoimmune liver diseases

Show Author's information Ya‐Fei Xu1Zhi‐Bin Zhao2Ethan P. Yan3Zhe‐Xiong Lian4 ( )Weici Zhang3( )
School of Medicine, South China University of Technology, Guangzhou, China
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California, USA
Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China

Abstract

Autoimmune liver diseases (ALDs) are chronic inflammatory hepatobiliary diseases in which the autoimmune responses directed against liver tissue result in inflammation and tissue damage. There are several types of ALDs, including autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, immunoglobulin G4‐related sclerosing cholangitis, and overlap syndromes. Metabolism and epigenetics are both critical components of the development and progression of ALDs. Immunometabolism addresses how metabolic processes influence immune cell development, fate and behavior, and how immune responses impact metabolism. In the context of immunity, epigenetics involves regulating gene expression without altering the DNA sequence. Epigenetic modifications can ultimately result in changes in the immunophenotype. The interplay between the immune system, metabolism, and epigenetic factors is highly complex. A better understanding of this interplay and the regulatory mechanisms involved is crucial to uncover the disease pathogenesis of ALDs and exploring novel therapeutic options. This article provides a comprehensive review of the dysregulation of immunometabolism and epigenetics, as well as the multilevel regulatory mechanisms, underlying the autoimmunity in ALDs.

Keywords: metabolism, immune system, autoimmune liver diseases, epigenetic factors

References(147)

[1]

Carbone M, Neuberger JM. Autoimmune liver disease, autoimmunity and liver transplantation. J Hepatol. 2014;60(1):210–23. https://doi.org/10.1016/j.jhep.2013.09.020

[2]

Washington MK. Autoimmune liver disease: overlap and outliers. Mod Pathol Offic J United States and Can Acad Pathol. 2007;20(Suppl 1):S15–30. https://doi.org/10.1038/modpathol.3800684

[3]

Zen Y, Harada K, Sasaki M, Sato Y, Tsuneyama K, Haratake J, et al. IgG4‐related sclerosing cholangitis with and without hepatic inflammatory pseudotumor, and sclerosing pancreatitis‐associated sclerosing cholangitis: do they belong to a spectrum of sclerosing pancreatitis? Am J Surg Pathol. 2004;28(9):1193–203. https://doi.org/10.1097/01.pas.0000136449.37936.6c

[4]

Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177–97. https://doi.org/10.1002/cphy.c130024

[5]

Yaqoob P. Fatty acids as gatekeepers of immune cell regulation. Trends Immunol. 2003;24(12):639–45. https://doi.org/10.1016/j.it.2003.10.002

[6]

Lawless SJ, Kedia‐Mehta N, Walls JF, McGarrigle R, Convery O, Sinclair LV, et al. Glucose represses dendritic cell‐induced T cell responses. Nat Commun. 2017;8(1):15620. https://doi.org/10.1038/ncomms15620

[7]

Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68. https://doi.org/10.1038/nbt.1685

[8]

Wang Q, Selmi C, Zhou X, Qiu D, Li Z, Miao Q, et al. Epigenetic considerations and the clinical reevaluation of the overlap syndrome between primary biliary cirrhosis and autoimmune hepatitis. J Autoimmun. 2013;41:140–5. https://doi.org/10.1016/j.jaut.2012.10.004

[9]

Lleo A, Zhang W, Zhao M, Tan Y, Bernuzzi F, Zhu B, et al. DNA methylation profiling of the X chromosome reveals an aberrant demethylation on CXCR3 promoter in primary biliary cirrhosis. Clin Epigenet. 2015;7(1):61. https://doi.org/10.1186/s13148-015-0098-9

[10]

Mitchell MM, Lleo A, Zammataro L, Mayo MJ, Invernizzi P, Bach N, et al. Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics. 2011;6(1):95–102. https://doi.org/10.4161/epi.6.1.13405

[11]

Selmi C, Mayo MJ, Bach N, Ishibashi H, Invernizzi P, Gish RG, et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology. 2004;127(2):485–92. https://doi.org/10.1053/j.gastro.2004.05.005

[12]

Etchegaray JP, Mostoslavsky R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol Cell. 2016;62(5):695–711. https://doi.org/10.1016/j.molcel.2016.05.029

[13]

Sasse D, Spornitz UM, Maly IP. Liver architecture. Enzyme. 1992;46(1‐3):8–32. https://doi.org/10.1159/000468776

[14]

Abdel‐Misih SR, Bloomston M. Liver anatomy. Surg Clin. 2010;90(4):643–53. https://doi.org/10.1016/j.suc.2010.04.017

[15]

Lautt WW, Greenway CV. Conceptual review of the hepatic vascular bed. Hepatology. 1987;7(5):952–63. https://doi.org/10.1002/hep.1840070527

[16]

Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen‐presenting cells and regulatory immune cells. Cell Mol Immunol. 2016;13(3):277–92. https://doi.org/10.1038/cmi.2015.112

[17]

Tiegs G, Lohse AW. Immune tolerance: what is unique about the liver. J Autoimmun. 2010;34(1):1–6. https://doi.org/10.1016/j.jaut.2009.08.008

[18]

Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol. 2021;22(9):608–24. https://doi.org/10.1038/s41580-021-00373-7

[19]

Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol. 2018;36(1):247–77. https://doi.org/10.1146/annurev-immunol-051116-052415

[20]

Bonnardel J, T'Jonck W, Gaublomme D, Browaeys R, Scott CL, Martens L, et al. Stellate cells, hepatocytes, and endothelial cells imprint the kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity. 2019;51(4):638–54.e9. https://doi.org/10.1016/j.immuni.2019.08.017

[21]

Mokdad AA, Lopez AD, Shahraz S, Lozano R, Mokdad AH, Stanaway J, et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med. 2014;12(1):145. https://doi.org/10.1186/s12916-014-0145-y

[22]

Asrani SK, Larson JJ, Yawn B, Therneau TM, Kim WR. Underestimation of liver‐related mortality in the United States. Gastroenterology. 2013;145(2):375–82. e1‐2. https://doi.org/10.1053/j.gastro.2013.04.005

[23]

Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–71. https://doi.org/10.1016/j.jhep.2018.09.014

[24]

Williams R. Global challenges in liver disease. Hepatology. 2006;44(3):521–6. https://doi.org/10.1002/hep.21347

[25]

Trivedi PJ, Hirschfield GM. Recent advances in clinical practice: epidemiology of autoimmune liver diseases. Gut. 2021;70(10):1989–2003. https://doi.org/10.1136/gutjnl-2020-322362

[26]

Carey EJ, Ali AH, Lindor KD. Primary biliary cirrhosis. Lancet. 2015;386(10003):1565–75. https://doi.org/10.1016/s0140-6736(15)00154-3

[27]

Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis ‐ a comprehensive review. J Hepatol. 2017;67(6):1298–323. https://doi.org/10.1016/j.jhep.2017.07.022

[28]

Björnsson E, Chari ST, Smyrk TC, Lindor K. Immunoglobulin G4 associated cholangitis: description of an emerging clinical entity based on review of the literature. Hepatology. 2007;45(6):1547–54. https://doi.org/10.1002/hep.21685

[29]

Rust C, Beuers U. Overlap syndromes among autoimmune liver diseases. World J Gastroenterol. 2008;14(21):3368–73. https://doi.org/10.3748/wjg.14.3368

[30]

Czaja AJ. Autoimmune hepatitis: focusing on treatments other than steroids. Canadian J Gastroenterol J canadien de gastroenterologie. 2012;26(9):615–20. https://doi.org/10.1155/2012/512132

[31]

Mitchell SA, Bansi DS, Hunt N, Von Bergmann K, Fleming KA, Chapman RW. A preliminary trial of high‐dose ursodeoxycholic acid in primary sclerosing cholangitis. Gastroenterology. 2001;121(4):900–7. https://doi.org/10.1053/gast.2001.27965

[32]

Oseini AM, Chaiteerakij R, Shire AM, Ghazale A, Kaiya J, Moser CD, et al. Utility of serum immunoglobulin G4 in distinguishing immunoglobulin G4‐associated cholangitis from cholangiocarcinoma. Hepatology. 2011;54(3):940–8. https://doi.org/10.1002/hep.24487

[33]

Liberal R, Zen Y, Mieli‐Vergani G, Vergani D. Liver transplantation and autoimmune liver diseases. Liver Transplant: Offi Publ Am Assoc Stud Liver Dis Int Liver Transplant Soc. 2013;19(10):1065–77. https://doi.org/10.1002/lt.23704

[34]

Bogdanos DP, Mieli‐Vergani G, Vergani D. Virus, liver and autoimmunity. Dig Liver Dis: Off J Italian Soc Gastroenterol Italian Assoc Stud Liver. 2000;32(5):440–6. https://doi.org/10.1016/s1590-8658(00)80266-2

[35]

Sánchez B, Hevia A, González S, Margolles A. Interaction of intestinal microorganisms with the human host in the framework of autoimmune diseases. Front Immunol. 2015;6:594. https://doi.org/10.3389/fimmu.2015.00594

[36]

Couto CA, Bittencourt PL, Porta G, Abrantes‐Lemos CP, Carrilho FJ, Guardia BD, et al. Antismooth muscle and antiactin antibodies are indirect markers of histological and biochemical activity of autoimmune hepatitis. Hepatology. 2014;59(2):592–600. https://doi.org/10.1002/hep.26666

[37]

Sebode M, Weiler‐Normann C, Liwinski T, Schramm C. Autoantibodies in autoimmune liver disease‐clinical and diagnostic relevance. Front Immunol. 2018;9:609. https://doi.org/10.3389/fimmu.2018.00609

[38]

Rowley MJ, Maeda T, Mackay IR, Loveland BE, McMullen GL, Tribbick G, et al. Differing epitope selection of experimentally‐induced and natural antibodies to a disease‐specific autoantigen, the E2 subunit of pyruvate dehydrogenase complex (PDC‐E2). Int Immunol. 1992;4(11):1245–53. https://doi.org/10.1093/intimm/4.11.1245

[39]

Berglin L, Björkström NK, Bergquist A. Primary sclerosing cholangitis is associated with autoreactive IgA antibodies against biliary epithelial cells. Scand J Gastroenterol. 2013;48(6):719–28. https://doi.org/10.3109/00365521.2013.786131

[40]

Tornai T, Tornai D, Sipeki N, Tornai I, Alsulaimani R, Fechner K, et al. Loss of tolerance to gut immunity protein, glycoprotein 2 (GP2) is associated with progressive disease course in primary sclerosing cholangitis. Sci Rep. 2018;8(1):399. https://doi.org/10.1038/s41598-017-18622-1

[41]

Stone JH, Zen Y, Deshpande V. IgG4‐related disease. N Engl J Med. 2012;366(6):539–51. https://doi.org/10.1056/NEJMra1104650

[42]

Fournié GJ, Cautain B, Xystrakis E, Damoiseaux J, Mas M, Lagrange D, et al. Cellular and genetic factors involved in the difference between Brown Norway and Lewis rats to develop respectively type‐2 and type‐1 immune‐mediated diseases. Immunol Rev. 2001;184(1):145–60. https://doi.org/10.1034/j.1600-065x.2001.1840114.x

[43]

Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun. 2016;66:60–75. https://doi.org/10.1016/j.jaut.2015.08.020

[44]

Franco A, Barnaba V, Natali P, Balsano C, Musca A, Balsano F. Expression of class Ⅰ and class Ⅱ major histocompatibility complex antigens on human hepatocytes. Hepatology. 1988;8(3):449–54. https://doi.org/10.1002/hep.1840080302

[45]

Spengler U, Pape GR, Hoffmann RM, Johnson JP, Eisenburg J, Paumgartner G, et al. Differential expression of MHC class Ⅱ subregion products on bile duct epithelial cells and hepatocytes in patients with primary biliary cirrhosis. Hepatology. 1988;8(3):459–62. https://doi.org/10.1002/hep.1840080304

[46]

Spellberg B, Edwards JE, Jr. Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis: Offi Publ Infect Dis Soc America. 2001;32(1):76–102. https://doi.org/10.1086/317537

[47]

Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, et al. Generation of pathogenic T(H)17 cells in the absence of TGF‐β signalling. Nature. 2010;467(7318):967–71. https://doi.org/10.1038/nature09447

[48]

Baier JL, Mattner J. Mechanisms of autoimmune liver disease. Discov Med. 2014;18(100):255–63.

[49]

Drugarin D, Negru S, Koreck A, Zosin I, Cristea C. The pattern of a T(H)1 cytokine in autoimmune thyroiditis. Immunol Lett. 2000;71(2):73–7. https://doi.org/10.1016/s0165-2478(99)00156-x

[50]

Lund FE. Cytokine‐producing B lymphocytes‐key regulators of immunity. Curr Opin Immunol. 2008;20(3):332–8. https://doi.org/10.1016/j.coi.2008.03.003

[51]

Longhi MS, Ma Y, Mieli‐Vergani G, Vergani D. Aetiopathogenesis of autoimmune hepatitis. J Autoimmun. 2010;34(1):7–14. https://doi.org/10.1016/j.jaut.2009.08.010

[52]

Wang L, Sun Y, Zhang Z, Jia Y, Zou Z, Ding J, et al. CXCR5+ CD4+ T follicular helper cells participate in the pathogenesis of primary biliary cirrhosis. Hepatology. 2015;61(2):627–38. https://doi.org/10.1002/hep.27306

[53]

Moritoki Y, Lian ZX, Ohsugi Y, Ueno Y, Gershwin ME. B cells and autoimmune liver diseases. Autoimmun Rev. 2006;5(7):449–57. https://doi.org/10.1016/j.autrev.2006.02.006

[54]

Goverman JM. Immune tolerance in multiple sclerosis. Immunol Rev. 2011;241(1):228–40. https://doi.org/10.1111/j.1600-065X.2011.01016.x

[55]

Liberal R, Grant CR, Longhi MS, Mieli‐Vergani G, Vergani D. Regulatory T cells: mechanisms of suppression and impairment in autoimmune liver disease. IUBMB Life. 2015;67(2):88–97. https://doi.org/10.1002/iub.1349

[56]

Cripps JG, Gorham JD. MDSC in autoimmunity. Int Immunopharm. 2011;11(7):789–93. https://doi.org/10.1016/j.intimp.2011.01.026

[57]

O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65. https://doi.org/10.1038/nri.2016.70

[58]

Lu Y, Liu H, Bi Y, Yang H, Li Y, Wang J, et al. Glucocorticoid receptor promotes the function of myeloid‐derived suppressor cells by suppressing HIF1α‐dependent glycolysis. Cell Mol Immunol. 2018;15(6):618–29. https://doi.org/10.1038/cmi.2017.5

[59]

Yang F, Zhou L, Shen Y, Zhao S, Zheng Y, Men R, et al. Metabolic heterogeneity caused by HLA‐DRB1*04:05 and protective effect of inosine on autoimmune hepatitis. Front Immunol. 2022;13:982186. https://doi.org/10.3389/fimmu.2022.982186

[60]

Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, et al. A placebo‐controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016;375(7):631–43. https://doi.org/10.1056/NEJMoa1509840

[61]

Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology. 2015;148(4):751–61.e8. https://doi.org/10.1053/j.gastro.2014.12.005

[62]

Bowlus CL. Obeticholic acid for the treatment of primary biliary cholangitis in adult patients: clinical utility and patient selection. Hepatic Med. 2016;8:89–95. https://doi.org/10.2147/hmer.S91709

[63]

Zhu C, Boucheron N, Müller AC, Májek P, Claudel T, Halilbasic E, et al. 24‐Norursodeoxycholic acid reshapes immunometabolism in CD8(+) T cells and alleviates hepatic inflammation. J Hepatol. 2021;75(5):1164–76. https://doi.org/10.1016/j.jhep.2021.06.036

[64]

Zhu C, Boucheron N, Rica R, Stolz V, Halilbasic E, Claudel T, et al. 24‐Nor‐ursodeoxycholic acid counteracts TH17/Treg imbalance and ameliorates intestinal inflammation by restricting glutaminolysis in differentiating TH17 cells. bioRxiv; 2022.

[65]

Zhang M, Li Q, Zhou C, Zhao Y, Li R, Zhang Y. Demethyleneberberine attenuates concanavalin A‐induced autoimmune hepatitis in mice through inhibition of NF‐κB and MAPK signaling. Int Immunopharm. 2020;80:106137. https://doi.org/10.1016/j.intimp.2019.106137

[66]

Zhao L, Tang Y, You Z, Wang Q, Liang S, Han X, et al. Interleukin‐17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin‐6 expression. PLoS One. 2011;6(4):e18909. https://doi.org/10.1371/journal.pone.0018909

[67]

Odin JA, Huebert RC, Casciola‐Rosen L, LaRusso NF, Rosen A. Bcl‐2‐dependent oxidation of pyruvate dehydrogenase‐E2, a primary biliary cirrhosis autoantigen, during apoptosis. J Clin Investig. 2001;108(2):223–32. https://doi.org/10.1172/jci10716

[68]

Liao J, Wang X, Bi Y, Shen B, Shao K, Yang H, et al. Dexamethasone potentiates myeloid‐derived suppressor cell function in prolonging allograft survival through nitric oxide. J Leukoc Biol. 2014;96(5):675–84. https://doi.org/10.1189/jlb.2HI1113-611RR

[69]

Lim YS, Oh HB, Choi SE, Kwon OJ, Heo YS, Lee HC, et al. Susceptibility to type 1 autoimmune hepatitis is associated with shared amino acid sequences at positions 70‐74 of the HLA‐DRB1 molecule. J Hepatol. 2008;48(1):133–9. https://doi.org/10.1016/j.jhep.2007.08.019

[70]

Floreani A, Restrepo‐Jiménez P, Secchi MF, De Martin S, Leung PSC, Krawitt E, et al. Etiopathogenesis of autoimmune hepatitis. J Autoimmun. 2018;95:133–43. https://doi.org/10.1016/j.jaut.2018.10.020

[71]

Umemura T, Katsuyama Y, Yoshizawa K, Kimura T, Joshita S, Komatsu M, et al. Human leukocyte antigen class Ⅱ haplotypes affect clinical characteristics and progression of type 1 autoimmune hepatitis in Japan. PLoS One. 2014;9(6):e100565. https://doi.org/10.1371/journal.pone.0100565

[72]

Ma Y, Su H, Yuksel M, Longhi MS, McPhail MJ, Wang P, et al. Human leukocyte antigen profile predicts severity of autoimmune liver disease in children of European ancestry. Hepatology. 2021;74(4):2032–46. https://doi.org/10.1002/hep.31893

[73]

Zhu Y, Wang X, Zhu L, Tu Y, Chen W, Gong L, et al. Lactobacillus rhamnosus GG combined with inosine ameliorates alcohol‐induced liver injury through regulation of intestinal barrier and Treg/Th1 cells. Toxicol Appl Pharmacol. 2022;439:115923. https://doi.org/10.1016/j.taap.2022.115923

[74]

Guo W, Xiang Q, Mao B, Tang X, Cui S, Li X, et al. Protective effects of microbiome‐derived inosine on lipopolysaccharide‐induced acute liver damage and inflammation in mice via mediating the TLR4/NF‐κB pathway. J Agric Food Chem. 2021;69(27):7619–28. https://doi.org/10.1021/acs.jafc.1c01781

[75]

Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity. 2022;55(1):14–30. https://doi.org/10.1016/j.immuni.2021.12.012

[76]

Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 2014;11(1):55–67. https://doi.org/10.1038/nrgastro.2013.151

[77]

Li T, Chiang JYL. Bile acid‐based therapies for non‐alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr. 2020;9(2):152–69. https://doi.org/10.21037/hbsn.2019.09.03

[78]

Tully DC, Rucker PV, Chianelli D, Williams J, Vidal A, Alper PB, et al. Discovery of tropifexor (LJN452), a highly potent non‐bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH). J Med Chem. 2017;60(24):9960–73. https://doi.org/10.1021/acs.jmedchem.7b00907

[79]

Schramm C, Wedemeyer H, Mason A, Hirschfield GM, Levy C, Kowdley KV, et al. Farnesoid X receptor agonist tropifexor attenuates cholestasis in a randomised trial in patients with primary biliary cholangitis. JHEP Rep Innovat Hepatol. 2022;4(11):100544. https://doi.org/10.1016/j.jhepr.2022.100544

[80]

Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen‐activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transd. 2011;2011:792639–6. https://doi.org/10.1155/2011/792639

[81]

Yang Z, Song L, Huang C. Gadd45 proteins as critical signal transducers linking NF‐kappaB to MAPK cascades. Curr Cancer Drug Targets. 2009;9(8):915–30. https://doi.org/10.2174/156800909790192383

[82]

Ma X, Jia YT, Qiu DK. Inhibition of p38 mitogen‐activated protein kinase attenuates experimental autoimmune hepatitis: involvement of nuclear factor kappa B. World J Gastroenterol. 2007;13(31):4249–54. https://doi.org/10.3748/wjg.v13.i31.4249

[83]

Bae HR, Choi MS, Kim S, Young HA, Gershwin ME, Jeon SM, et al. IFNγ is a key link between obesity and Th1‐mediated AutoImmune diseases. Int J Mol Sci. 2020;22(1):208. https://doi.org/10.3390/ijms22010208

[84]

Harada K, Ozaki S, Gershwin ME, Nakanuma Y. Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis. Hepatology. 1997;26(6):1399–405. https://doi.org/10.1002/hep.510260604

[85]

Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl‐2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993;75(2):241–51. https://doi.org/10.1016/0092-8674(93)80066-n

[86]

Tsujimoto Y, Shimizu S, Eguchi Y, Kamiike W, Matsuda H. Bcl‐2 and Bcl‐xL block apoptosis as well as necrosis: possible involvement of common mediators in apoptotic and necrotic signal transduction pathways. Leukemia. 1997;11(Suppl 3):380–2.

[87]

Charlotte F, L'Herminé A, Martin N, Geleyn Y, Nollet M, Gaulard P, et al. Immunohistochemical detection of bcl‐2 protein in normal and pathological human liver. Am J Pathol. 1994;144(3):460–5.

[88]

Meredith MJ, Cusick CL, Soltaninassab S, Sekhar KS, Lu S, Freeman ML. Expression of Bcl‐2 increases intracellular glutathione by inhibiting methionine‐dependent GSH efflux. Biochem Biophys Res Commun. 1998;248(3):458–63. https://doi.org/10.1006/bbrc.1998.8998

[89]

Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36. https://doi.org/10.1093/carcin/bgp220

[90]

Selmi C, Cavaciocchi F, Lleo A, Cheroni C, De Francesco R, Lombardi SA, et al. Genome‐wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Front Immunol. 2014;5:128. https://doi.org/10.3389/fimmu.2014.00128

[91]

Lleo A, Liao J, Invernizzi P, Zhao M, Bernuzzi F, Ma L, et al. Immunoglobulin M levels inversely correlate with CD40 ligand promoter methylation in patients with primary biliary cirrhosis. Hepatology. 2012;55(1):153–60. https://doi.org/10.1002/hep.24630

[92]

Zachou K, Arvaniti P, Lyberopoulou A, Sevdali E, Speletas M, Ioannou M, et al. Altered DNA methylation pattern characterizes the peripheral immune cells of patients with autoimmune hepatitis. Liver Int Off J Int Ass Stud Liver. 2022;42(6):1355–68. https://doi.org/10.1111/liv.15176

[93]

Chen Y, Hua X, Huang B, Karsten S, You Z, Li B, et al. MutT homolog 1 inhibitor karonudib attenuates autoimmune hepatitis by inhibiting DNA repair in activated T cells. Hepatol Comm. 2022;6(5):1016–31. https://doi.org/10.1002/hep4.1862

[94]

Hu Z, Huang Y, Liu Y, Sun Y, Zhou Y, Gu M, et al. β‐Arrestin 1 modulates functions of autoimmune T cells from primary biliary cirrhosis patients. J Clin Immunol. 2011;31(3):346–55. https://doi.org/10.1007/s10875-010-9492-4

[95]

Lleo A, Jepsen P, Morenghi E, Carbone M, Moroni L, Battezzati PM, et al. Evolving trends in female to male incidence and male mortality of primary biliary cholangitis. Sci Rep. 2016;6(1):25906. https://doi.org/10.1038/srep25906

[96]

Miozzo M, Selmi C, Gentilin B, Grati FR, Sirchia S, Oertelt S, et al. Preferential X chromosome loss but random inactivation characterize primary biliary cirrhosis. Hepatology. 2007;46(2):456–62. https://doi.org/10.1002/hep.21696

[97]

McNally JP, Millen SH, Chaturvedi V, Lakes N, Terrell CE, Elfers EE, et al. Manipulating DNA damage‐response signaling for the treatment of immune‐mediated diseases. Proc Natl Acad Sci USA. 2017;114(24):E4782–e91. https://doi.org/10.1073/pnas.1703683114

[98]

Sasaki M, Ikeda H, Yamaguchi J, Nakada S, Nakanuma Y. Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology. 2008;48(1):186–95. https://doi.org/10.1002/hep.22348

[99]

Jaiswal M, LaRusso NF, Shapiro RA, Billiar TR, Gores GJ. Nitric oxide‐mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology. 2001;120(1):190–9. https://doi.org/10.1053/gast.2001.20875

[100]

Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, et al. A nuclear function of beta‐arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell. 2005;123(5):833–47. https://doi.org/10.1016/j.cell.2005.09.011

[101]

Fan H, Luttrell LM, Tempel GE, Senn JJ, Halushka PV, Cook JA. Beta‐arrestins 1 and 2 differentially regulate LPS‐induced signaling and pro‐inflammatory gene expression. Mol Immunol. 2007;44(12):3092–9. https://doi.org/10.1016/j.molimm.2007.02.009

[102]

Ellinghaus D, Folseraas T, Holm K, Ellinghaus E, Melum E, Balschun T, et al. Genome‐wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology. 2013;58(3):1074–83. https://doi.org/10.1002/hep.25977

[103]

Rajagopal S, Rajagopal K, Lefkowitz RJ. Teaching old receptors new tricks: biasing seven‐transmembrane receptors. Nat Rev Drug Discov. 2010;9(5):373–86. https://doi.org/10.1038/nrd3024

[104]

Schneditz G, Elias JE, Pagano E, Zaeem Cader M, Saveljeva S, Long K, et al. GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Sci Signal. 2019;12(562). https://doi.org/10.1126/scisignal.aau9048

[105]

Li A, Song W, Qian J, Li Y, He J, Zhang Q, et al. MiR‐122 modulates type Ⅰ interferon expression through blocking suppressor of cytokine signaling 1. Int J Biochem Cell Biol. 2013;45(4):858–65. https://doi.org/10.1016/j.biocel.2013.01.008

[106]

Banales JM, Sáez E, Uriz M, Sarvide S, Urribarri AD, Splinter P, et al. Up‐regulation of microRNA 506 leads to decreased Cl‐/HCO3‐ anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology. 2012;56(2):687–97. https://doi.org/10.1002/hep.25691

[107]

Beyazit Y, Kocak E, Tanoglu A, Kekilli M. Oxidative stress might play a role in low serum vitamin D associated liver fibrosis among patients with autoimmune hepatitis. Dig Dis Sci. 2015;60(4):1106–8. https://doi.org/10.1007/s10620-015-3526-y

[108]

Hu XD, Jiang SL, Liu CH, Hu YY, Liu C, Sun MY, et al. Preventive effects of 1,25‐(OH)2VD3 against ConA‐induced mouse hepatitis through promoting vitamin D receptor gene expression. Acta Pharmacol Sin. 2010;31(6):703–8. https://doi.org/10.1038/aps.2010.53

[109]

Baran DT, Milne ML. 1,25 Dihydroxyvitamin D increases hepatocyte cytosolic calcium levels. A potential regulator of vitamin D‐25‐hydroxylase. J Clin Investig. 1986;77(5):1622–6. https://doi.org/10.1172/jci112478

[110]

Rixon RH, Isaacs RJ, Whitfield JF. Control of DNA polymerase‐alpha activity in regenerating rat liver by calcium and 1 alpha,25(OH)2D3. J Cell Physiol. 1989;139(2):354–60. https://doi.org/10.1002/jcp.1041390218

[111]

Huang B, Lyu Z, Qian Q, Chen Y, Zhang J, Li B, et al. NUDT1 promotes the accumulation and longevity of CD103+ TRM cells in primary biliary cholangitis. J Hepatol. 2022;77(5):1311–24. https://doi.org/10.1016/j.jhep.2022.06.014

[112]

Chen J, Liu W, Zhu W. Foxp3⁺ Treg cells are associated with pathological process of autoimmune hepatitis by activating methylation modification in autoimmune hepatitis patients. Med Sci Monit. 2019;25:6204–12. https://doi.org/10.12659/msm.915408

[113]

Oo YH, Ackrill S, Cole R, Jenkins L, Anderson P, Jeffery HC, et al. Liver homing of clinical grade Tregs after therapeutic infusion in patients with autoimmune hepatitis. JHEP Rep Inn Hepatol. 2019;1(4):286–96. https://doi.org/10.1016/j.jhepr.2019.08.001

[114]

Callegari E, Gramantieri L, Domenicali M, D'Abundo L, Sabbioni S, Negrini M. MicroRNAs in liver cancer: a model for investigating pathogenesis and novel therapeutic approaches. Cell Death Differ. 2015;22(1):46–57. https://doi.org/10.1038/cdd.2014.136

[115]

Migita K, Komori A, Kozuru H, Jiuchi Y, Nakamura M, Yasunami M, et al. Circulating microRNA profiles in patients with type‐1 autoimmune hepatitis. PLoS One. 2015;10(11):e0136908. https://doi.org/10.1371/journal.pone.0136908

[116]

Goldschmidt I, Thum T, Baumann U. Circulating miR‐21 and miR‐29a as markers of disease severity and etiology in cholestatic pediatric liver disease. J Clin Med. 2016;5(3):28. https://doi.org/10.3390/jcm5030028

[117]

Xia G, Wu S, Wang X, Fu M. Inhibition of microRNA‐155 attenuates concanavalin‐A‐induced autoimmune hepatitis by regulating Treg/Th17 cell differentiation. Can J Physiol Pharmacol. 2018;96(12):1293–300. https://doi.org/10.1139/cjpp-2018-0467

[118]

Tomiyama T, Yang GX, Zhao M, Zhang W, Tanaka H, Wang J, et al. The modulation of co‐stimulatory molecules by circulating exosomes in primary biliary cirrhosis. Cell Mol Immunol. 2017;14(3):276–84. https://doi.org/10.1038/cmi.2015.86

[119]

Rosenberger CM, Podyminogin RL, Navarro G, Zhao GW, Askovich PS, Weiss MJ, et al. miR‐451 regulates dendritic cell cytokine responses to influenza infection. J Immunol. 2012;189(12):5965–75. https://doi.org/10.4049/jimmunol.1201437

[120]

Smigielska‐Czepiel K, van den Berg A, Jellema P, van der Lei RJ, Bijzet J, Kluiver J, et al. Comprehensive analysis of miRNA expression in T‐cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Gene Immun. 2014;15(2):115–25. https://doi.org/10.1038/gene.2013.69

[121]

Sato K, Yoshimura A, Kaneko T, Ukai T, Ozaki Y, Nakamura H, et al. A single nucleotide polymorphism in 3'‐untranslated region contributes to the regulation of Toll‐like receptor 4 translation. J Biol Chem. 2012;287(30):25163–72. https://doi.org/10.1074/jbc.M111.338426

[122]

Padgett KA, Lan RY, Leung PC, Lleo A, Dawson K, Pfeiff J, et al. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J Autoimmun. 2009;32(3‐4):246–53. https://doi.org/10.1016/j.jaut.2009.02.022

[123]

Fickert P, Trauner M. When lightning strikes twice: the plot thickens for a dual role of the anion exchanger 2 (AE2/SLC4A2) in the pathogenesis and treatment of primary biliary cirrhosis. J Hepatol. 2009;50(3):633–5. https://doi.org/10.1016/j.jhep.2008.12.006

[124]

Prieto J, Qian C, García N, Díez J, Medina JF. Abnormal expression of anion exchanger genes in primary biliary cirrhosis. Gastroenterology. 1993;105(2):572–8. https://doi.org/10.1016/0016-5085(93)90735-u

[125]

Banales JM, Sarvide S, Recalde S, Ferrer A, Uriarte I, et al. Ae2a,b‐deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology. 2008;134(5):1482–93. https://doi.org/10.1053/j.gastro.2008.02.020

[126]

Bernuzzi F, Marabita F, Lleo A, Carbone M, Mirolo M, Marzioni M, et al. Serum microRNAs as novel biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Clin Exp Immunol. 2016;185(1):61–71. https://doi.org/10.1111/cei.12776

[127]

DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689s–96s. https://doi.org/10.1093/ajcn/80.6.1689S

[128]

Saron ML, Godoy HT, Hessel G. Nutritional status of patients with biliary atresia and autoimmune hepatitis related to serum levels of vitamins A, D and E. Arq Gastroenterol. 2009;46(1):62–8. https://doi.org/10.1590/s0004-28032009000100016

[129]

Smyk DS, Orfanidou T, Invernizzi P, Bogdanos DP, Lenzi M. Vitamin D in autoimmune liver disease. Clin Res Hepatol Gastroenterol. 2013;37(5):535–45. https://doi.org/10.1016/j.clinre.2013.05.016

[130]

Luong KV, Nguyen LT. The role of vitamin d in autoimmune hepatitis. J Clin Med Res. 2013;5(6):407–15. https://doi.org/10.4021/jocmr1505w

[131]

Efe C, Kav T, Aydin C, Cengiz M, Imga NN, Purnak T, et al. Low serum vitamin D levels are associated with severe histological features and poor response to therapy in patients with autoimmune hepatitis. Dig Dis Sci. 2014;59(12):3035–42. https://doi.org/10.1007/s10620-014-3267-3

[132]

Agmon‐Levin N, Kopilov R, Selmi C, Nussinovitch U, Sanchez‐Castanon M, Lopez‐Hoyos M, et al. Vitamin D in primary biliary cirrhosis, a plausible marker of advanced disease. Immunol Res. 2015;61(1‐2):141–6. https://doi.org/10.1007/s12026-014-8594-0

[133]

Ebadi M, Bhanji RA, Mazurak VC, Lytvyak E, Mason A, Czaja AJ, et al. Severe vitamin D deficiency is a prognostic biomarker in autoimmune hepatitis. Aliment Pharmacol Therapeut. 2019;49(2):173–82. https://doi.org/10.1111/apt.15029

[134]

Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology. 2002;35(1):126–31. https://doi.org/10.1053/jhep.2002.30084

[135]

Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli‐Vergani G, Vergani D. Impairment of CD4(+)CD25(+) regulatory T‐cells in autoimmune liver disease. J Hepatol. 2004;41(1):31–7. https://doi.org/10.1016/j.jhep.2004.03.008

[136]

Huang C, Shen Y, Shen M, Fan X, Men R, Ye T, et al. Glucose metabolism reprogramming of regulatory T cells in concanavalin A‐induced hepatitis. Front Pharmacol. 2021;12:726128. https://doi.org/10.3389/fphar.2021.726128

[137]

Viollet B, Guigas B, Leclerc J, Hébrard S, Lantier L, Mounier R, et al. AMP‐activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol. 2009;196(1):81–98. https://doi.org/10.1111/j.1748-1716.2009.01970.x

[138]

Zhu H, Liu Z, An J, Zhang M, Qiu Y, Zou MH. Activation of AMPKα1 is essential for regulatory T cell function and autoimmune liver disease prevention. Cell Mol Immunol. 2021;18(12):2609–17. https://doi.org/10.1038/s41423-021-00790-w

[139]

Wang Y, Zhou L, Li Y, Guo L, Zhou Z, Xie H, et al. The effects of berberine on concanavalin A‐induced autoimmune hepatitis (AIH) in mice and the adenosine 5'‐monophosphate (AMP)‐Activated protein kinase (AMPK) pathway. Med Sci Mon Int Med J Exp Clin Res. 2017;23:6150–61. https://doi.org/10.12659/msm.907377

[140]

Dyson JK, Webb G, Hirschfield GM, Lohse A, Beuers U, Lindor K, et al. Unmet clinical need in autoimmune liver diseases. J Hepatol. 2015;62(1):208–18. https://doi.org/10.1016/j.jhep.2014.09.010

[141]

Invernizzi P. Geoepidemiology of autoimmune liver diseases. J Autoimmun. 2010;34(3):J300–J6. https://doi.org/10.1016/j.jaut.2009.12.002

[142]

Tanaka A, Tazuma S, Okazaki K, Tsubouchi H, Inui K, Takikawa H. Nationwide survey for primary sclerosing cholangitis and IgG4‐related sclerosing cholangitis in Japan. J Hepatobiliary Pancreat Sci. 2014;21(1):43–50. https://doi.org/10.1002/jhbp.50

[143]

Kremer AE, van Dijk R, Leckie P, Schaap FG, Kuiper EM, Mettang T, et al. Serum autotaxin is increased in pruritus of cholestasis, but not of other origin, and responds to therapeutic interventions. Hepatology. 2012;56(4):1391–400. https://doi.org/10.1002/hep.25748

[144]

Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022;13(12):877–919. https://doi.org/10.1007/s13238-021-00846-7

[145]

Zhang Y, Leung DY, Richers BN, Liu Y, Remigio LK, Riches DW, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase‐1. J Immunol. 2012;188. 2127–35. https://doi.org/10.4049/jimmunol.1102412

[146]

Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, Liu Y. Restraint of proinflammatory cytokine biosynthesis by mitogen‐activated protein kinase phosphatase‐1 in lipopolysaccharide‐stimulated macrophages. J Immunol. 2002;169(11):6408–16. https://doi.org/10.4049/jimmunol.169.11.6408

[147]

Sun C, Qi R, Wang L, Yan J, Wang Y. p38 MAPK regulates calcium signal‐mediated lipid accumulation through changing VDR expression in primary preadipocytes of mice. Mol Biol Rep. 2012;39(3):3179–84. https://doi.org/10.1007/s11033-011-1084-8

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 March 2023
Accepted: 16 May 2023
Published: 22 June 2023
Issue date: June 2023

Copyright

© 2023 The Authors. Tsinghua University Press.

Acknowledgements

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (82120108013) and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07S054).

Rights and permissions

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return