Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Inhibitor of apoptosis‐stimulating protein of p53 (iASPP) is an evolutionarily conserved p53 inhibitor. Mechanistically, iASPP can accelerate tumorigenesis by inhibiting the transactivation function of p53. Targeting the interaction between iASPP and p53 may be a potential therapy for restoring the activity of p53 in tumors.
We constructed an iASPP‐derived peptide, called A8, that was derived from the C‐terminus of iASPP. Here, we transfected A8 into two wild‐type (WT) p53 cell lines, U2OS and A549, and then determined the number of apoptotic cells. The mechanism by which A8 affected apoptosis was further examined by immunoprecipitation (IP), Dual‐Luciferase reporter assays, and chromatin IP assays. Real‐time polymerase chain reaction and western blots were also used to examine the expression levels of apoptosis‐related factors.
Our data demonstrate that A8 can increase apoptosis rates in WT p53 cell lines. Functional analysis suggested that A8 restored the transcriptional function and DNA binding activities of p53 toward the Bax and PUMA gene promoters. Moreover, A8 reduced cell proliferation and inhibited tumor growth in xenograft nude mice.
These data provide a new approach for restoring the tumor suppressor function of p53 in cancer cells that express WT p53 and therefore may serve as a novel cancer treatment strategy.
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9. https://doi.org/10.1038/nature12634
Janic A, Valente LJ, Wakefield MJ, Di Stefano L, Milla L, Wilcox S, et al. DNA repair processes are critical mediators of p53‐dependent tumor suppression. Nat Med. 2018;24(7):947–53. https://doi.org/10.1038/s41591-018-0043-5
Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–5. https://doi.org/10.1038/nature05541
Lu M, Breyssens H, Salter V, Zhong S, Hu Y, Baer C, et al. Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1‐phosphorylated nuclear iASPP. Cancer Cell. 2013;23(5):618–33. https://doi.org/10.1016/j.ccr.2013.03.013
Bergamaschi D, Samuels Y, O'Neil NJ, Trigiante G, Crook T, Hsieh JK, et al. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet. 2003;33(2):162–7. https://doi.org/10.1038/ng1070
Gillotin S. iASPP, a potential drug target in cancer therapy. Leuk Res. 2009;33(9):1175–7. https://doi.org/10.1016/j.leukres.2009.04.037
Cai Y, Qiu S, Gao X, Gu SZ, Liu ZJ. iASPP inhibits p53‐independent apoptosis by inhibiting transcriptional activity of p63/p73 on promoters of proapoptotic genes. Apoptosis. 2012;17(8):777–83. https://doi.org/10.1007/s10495-012-0728-z
Li G, Wang R, Gao J, Deng K, Wei J, Wei Y. RNA interference‐mediated silencing of iASPP induces cell proliferation inhibition and G0/G1 cell cycle arrest in U251 human glioblastoma cells. Mol Cell Biochem. 2011;350(1‐2):193–200. https://doi.org/10.1007/s11010-010-0698-9
Qiu S, Cai Y, Gao X, Gu SZ, Liu ZJ. A small peptide derived from p53 linker region can resume the apoptotic activity of p53 by sequestering iASPP with p53. Cancer Lett. 2015;356(2 Pt B):910–7. https://doi.org/10.1016/j.canlet.2014.10.044
Bell HS, Ryan KM. iASPP inhibition: increased options in targeting the p53 family for cancer therapy. Cancer Res. 2008;68(13):4959–62. https://doi.org/10.1158/0008-5472
Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host‐guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev. 2017;46(22):7021–53. https://doi.org/10.1039/c6cs00898d
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev. 2021;50(4):2839–91. https://doi.org/10.1039/d0cs00011f
Yang X, Wu B, Zhou J, Lu H, Zhang H, Huang F, et al. Controlling intracellular enzymatic self‐assembly of peptide by host‐guest complexation for programming cancer cell death. Nano Lett. 2022;22(18):7588–96. https://doi.org/10.1021/acs.nanolett.2c02612
Yan M, Zhou J. Suprasomes: an emerging platform for cancer theranostics. Sci China Chem. 2023;66:613–4. https://doi.org/10.1007/s11426-022-1477-x
Slee EA, O'Connor DJ, Lu X. To die or not to die: how does p53 decide? Oncogene. 2004;23(16):2809–18. https://doi.org/10.1038/sj.onc.1207516
Robinson RA, Lu X, Jones EY, Siebold C. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Structure. 2008;16(2):259–68. https://doi.org/10.1016/j.str.2007.11.012
Qiu Q, Xiong W, Yang C, Gagnon C, Hardy P. Lymphocyte‐derived microparticles induce bronchial epithelial cells' pro‐inflammatory cytokine production and apoptosis. Mol Immunol. 2013;55(3‐4):220–30. https://doi.org/10.1016/j.molimm.2013.01.017
Whiddon JL, Langford AT, Wong CJ, Zhong JW, Tapscott SJ. Conservation and innovation in the DUX4‐family gene network. Nat Genet. 2017;49(6):935–40. https://doi.org/10.1038/ng.3846
Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–46. https://doi.org/10.1038/nm.4076
Liao JM, Lu H. ChIP for identification of p53 responsive DNA promoters. Methods Mol Biol. 2013;962:201–10. https://doi.org/10.1007/978-1-62703-236-0_17
Zang M, Zhang Y, Zhang B, Hu L, Li J, Fan Z, et al. CEACAM6 promotes tumor angiogenesis and vasculogenic mimicry in gastric cancer via FAK signaling. Biochim Biophys Acta. 2015;1852(5):1020–8. https://doi.org/10.1016/j.bbadis.2015.02.005
Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell. 2014;25(2):166–80. https://doi.org/10.1016/j.ccr.2014.01.010
Kim J, Yu L, Chen W, Xu Y, Wu M, Todorova D, et al. Wild‐type p53 promotes cancer metabolic switch by inducing PUMA‐dependent suppression of oxidative phosphorylation. Cancer Cell. 2019;35(2):191–203.e8. https://doi.org/10.1016/j.ccell.2018.12.012
Wang J, Thomas HR, Li Z, Yeo NCF, Scott HE, Dang N, et al. Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis. Cell Death Dis. 2021;12(7):659. https://doi.org/10.1038/s41419-021-03902-6
Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80(2):293–9. https://doi.org/10.1016/0092-8674(95)90412-3
Gnanapradeepan K, Basu S, Barnoud T, Budina‐Kolomets A, Kung CP, Murphy ME. The p53 tumor suppressor in the control of metabolism and ferroptosis. Front Endocrinol. 2018;9:124. https://doi.org/10.3389/fendo.2018.00124
Blandino G, Di Agostino S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. J Exp Clin Cancer Res. 2018;37(1):30. https://doi.org/10.1186/s13046-018-0705-7
Fritsche MK, Knopf A. The tumor suppressor p53 in mucosal melanoma of the head and neck. Genes. 2017;8(12):384. https://doi.org/10.3390/genes8120384
Saxena A, Shukla SK, Prasad KN, Ghoshal UC. Analysis of p53, K‐ras gene mutation & Helicobacter pylori infection in patients with gastric cancer & peptic ulcer disease at a tertiary care hospital in north India. Indian J Med Res. 2012;136(4):664–70.
Lu M, Miller P, Lu X. Restoring the tumour suppressive function of p53 as a parallel strategy in melanoma therapy. FEBS Lett. 2014;588(16):2616–21. https://doi.org/10.1016/j.febslet.2014.05.008
Cheng Z, Dai Y, Pang Y, Jiao Y, Zhao H, Zhang Z, et al. Enhanced expressions of FHL2 and iASPP predict poor prognosis in acute myeloid leukemia. Cancer Gene Ther. 2019;26(1‐2):17–25. https://doi.org/10.1038/s41417-018-0027-0
Li Y, Ahmad A, Sarkar FH. ASPP and iASPP: implication in cancer development and progression. Cell Mol Biol (Noisy‐le‐grand). 2015;61(6):2–8.
Zheng S, Wang X, Liu H, Zhao D, Lin Q, Jiang Q, et al. iASPP suppression mediates terminal UPR and improves BRAF‐inhibitor sensitivity of colon cancers. Cell Death Differ. 2023;30(2):327–40. https://doi.org/10.1038/s41418-022-01086-w
Jiang L, Siu MK, Wong OG, Tam KF, Lu X, Lam EW, et al. iASPP and chemoresistance in ovarian cancers: effects on paclitaxel‐mediated mitotic catastrophe. Clin Cancer Res. 2011;17(21):6924–33. https://doi.org/10.1158/1078-0432.CCR-11-0588
Laska MJ, Strandbygard D, Kjeldgaard A, Mains M, Corydon TJ, Memon AA, et al. Expression of the RAI gene is conducive to apoptosis: studies of induction and interference. Exp Cell Res. 2007;313(12):2611–21. https://doi.org/10.1016/j.yexcr.2007.05.006
Notari M, Hu Y, Koch S, Lu M, Ratnayaka I, Zhong S, et al. Inhibitor of apoptosis‐stimulating protein of p53 (iASPP) prevents senescence and is required for epithelial stratification. Proc Natl Acad Sci U S A. 2011;108(40):16645–50. https://doi.org/10.1073/pnas.1102292108
Liu ZJ, Cai Y, Hou L, Gao X, Xin HM, Lu X, et al. Effect of RNA interference of iASPP on the apoptosis in MCF‐7 breast cancer cells. Cancer Invest. 2008;26(9):878–82. https://doi.org/10.1080/07357900801965042
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.