Journal Home > Volume 1 , Issue 1

Tuberculosis (TB) remains a leading cause of deaths among patients with acquired immunodeficiency syndrome patients. Early diagnosis of TB is essential for administering timely anti‐TB therapy and improving health outcomes, particularly in the people living with HIV. However, conventional techniques used to detect Mycobacterium tuberculosis have significant drawbacks: for example, sputum smear microscopy has low sensitivity, and liquid culture is time‐consuming in patients with HIV‐TB co‐infection due to low sputum production. In addition, while immunological‐based methods involving tuberculin skin testing and interferon gamma release assays are commonly used for auxiliary TB diagnosis, they are often inaccurate in immunodeficient patients. Molecular techniques such as line probe assays, Xpert MTB, and lipoarabinomannan assay are recommended for early diagnosis by World Health Organization. However, no single technique is sufficicent for diagnosing HIV/TB co‐infection, suggesting that multiple diagnostic tests should be used to detect TB. Here, we summarize the drawbacks and advantages of existing TB‐diagnostic methods, as well as their applications to diagnosing HIV/TB co‐infection. We describe newly emerging technologies such as whole genome sequencing and mass spectrometry, with the aim of providing updated guidelines and alternative strategies for TB diagnosis, and particularly HIV/TB diagnosis.


menu
Abstract
Full text
Outline
About this article

Bottlenecks and recent advancements in detecting Mycobacterium tuberculosis in patients with HIV

Show Author's information Zixun Lin1,Liqin Sun2,Cheng Wang1,3Fuxiang Wang1Jun Wang1,4( )Qian Li1( )Hongzhou Lu1,3 ( )
National Clinical Research Centre for Infectious Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
Department of Infectious Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, Jiangsu, China

Zixun Lin and Liqin Sun contributed equally to this work and shared the first authorship.

Abstract

Tuberculosis (TB) remains a leading cause of deaths among patients with acquired immunodeficiency syndrome patients. Early diagnosis of TB is essential for administering timely anti‐TB therapy and improving health outcomes, particularly in the people living with HIV. However, conventional techniques used to detect Mycobacterium tuberculosis have significant drawbacks: for example, sputum smear microscopy has low sensitivity, and liquid culture is time‐consuming in patients with HIV‐TB co‐infection due to low sputum production. In addition, while immunological‐based methods involving tuberculin skin testing and interferon gamma release assays are commonly used for auxiliary TB diagnosis, they are often inaccurate in immunodeficient patients. Molecular techniques such as line probe assays, Xpert MTB, and lipoarabinomannan assay are recommended for early diagnosis by World Health Organization. However, no single technique is sufficicent for diagnosing HIV/TB co‐infection, suggesting that multiple diagnostic tests should be used to detect TB. Here, we summarize the drawbacks and advantages of existing TB‐diagnostic methods, as well as their applications to diagnosing HIV/TB co‐infection. We describe newly emerging technologies such as whole genome sequencing and mass spectrometry, with the aim of providing updated guidelines and alternative strategies for TB diagnosis, and particularly HIV/TB diagnosis.

Keywords: tuberculosis, diagnosis, HIV/TB co‐infection

References(71)

[1]

Koch A, Mizrahi V. Mycobacterium tuberculosis. Mycobacterium tuberculosis. Trends Microbiol. 2018;26(6): 555–6. https://doi.org/10.1016/j.tim.2018.02.012

[2]

Gambhir S, Ravina M, Rangan K, Dixit M, Barai S, Bomanji J. Imaging in extrapulmonary tuberculosis. Int J Infect Dis. 2017;56: 237–47. https://doi.org/10.1016/j.ijid.2016.11.003

[3]

Bagcchi S. WHO's Global Tuberculosis Report 2022. Lancet Microbe. 2023;4(1): e20. https://doi.org/10.1016/S2666‐5247(22)00359‐7

[4]

Warr AJ, Anterasian C, Shah JA, De Rosa SC, Nguyen FK, Maleche‐Obimbo E, et al. A CD4+ TNF+ monofunctional memory T‐cell response to BCG vaccination is associated with Mycobacterium tuberculosis infection in infants exposed to HIV. EBioMedicine. 2022;80: 104023. https://doi.org/10.1016/j.ebiom.2022.104023

[5]

Saharia KK, Koup RA. T cell susceptibility to HIV influences outcome of opportunistic infections. Cell. 2013;155(3): 505–14. https://doi.org/10.1016/j.cell.2013.09.045

[6]

Bates M, Mudenda V, Shibemba A, Kaluwaji J, Tembo J, Kabwe M, et al. Burden of tuberculosis at post mortem in inpatients at a tertiary referral centre in sub‐Saharan Africa: a prospective descriptive autopsy study. Lancet Infect Dis. 2015;15(5): 544–51. https://doi.org/10.1016/S1473‐3099(15)70058‐7

[7]

Sharma SK, Mohan A. Extrapulmonary tuberculosis. Indian J Med Res. 2004;120(4): 316–53.

[8]

Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, Cunningham J, et al. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis. 2006;6(10): 664–74. https://doi.org/10.1016/S1473‐3099(06)70602‐8

[9]

Perkins MD, Cunningham J. Facing the crisis: improving the diagnosis of tuberculosis in the HIV era. J Infect Dis. 2007;196(Suppl 1): S15–27. https://doi.org/10.1086/518656

[10]

Getahun H, Harrington M, O'Brien R, Nunn P. Diagnosis of smear‐negative pulmonary tuberculosis in people with HIV infection or AIDS in resource‐constrained settings: informing urgent policy changes. Lancet. 2007;369(9578): 2042–9. https://doi.org/10.1016/S0140‐6736(07)60284‐0

[11]

Reid MJ, Shah NS. Approaches to tuberculosis screening and diagnosis in people with HIV in resource‐limited settings. Lancet Infect Dis. 2009;9(3): 173–84. https://doi.org/10.1016/S1473‐3099(09)70043‐X

[12]

Drobniewski FA, Caws M, Gibson A, Young D. Modern laboratory diagnosis of tuberculosis. Lancet Infect Dis. 2003;3(3): 141–7. https://doi.org/10.1016/s1473‐3099(03)00544‐9

[13]

Menzies D, Pai M, Comstock G. Meta‐analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann Intern Med. 2007;146(5): 340–54. https://doi.org/10.7326/0003‐4819‐146‐5‐200703060‐00006

[14]

Walzl G, McNerney R, du Plessis N, Bates M, McHugh TD, Chegou NN, et al. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis. 2018;18(7): e199–210. https://doi.org/10.1016/S1473‐3099(18)30111‐7

[15]

Hamada Y, Cirillo DM, Matteelli A, Penn‐Nicholson A, Rangaka MX, Ruhwald M. Tests for tuberculosis infection: landscape analysis. Eur Respir J. 2021;58(5): 2100167. https://doi.org/10.1183/13993003.00167‐2021

[16]

Chen J, Zhang R, Wang J, Liu L, Zheng Y, Shen Y, et al. Interferon‐gamma release assays for the diagnosis of active tuberculosis in HIV‐infected patients: a systematic review and meta‐analysis. PLoS One. 2011;6(11): e26827. https://doi.org/10.1371/journal.pone.0026827

[17]

Arend SM, Thijsen SF, Leyten EM, Bouwman JJ, Franken WP, Koster BF, et al. Comparison of two interferon‐gamma assays and tuberculin skin test for tracing tuberculosis contacts. Am J Respir Crit Care Med. 2007;175(6): 618–27. https://doi.org/10.1164/rccm.200608‐1099OC

[18]

Mancuso JD, Diffenderfer JM, Ghassemieh BJ, Horne DJ, Kao TC. The prevalence of latent tuberculosis infection in the United States. Am J Respir Crit Care Med. 2016;194(4): 501–9. https://doi.org/10.1164/rccm.201508‐1683OC

[19]
WHO consolidated guidelines on tuberculosis: module 3: diagnosis – rapid diagnostics for tuberculosis detection [Internet]. Geneva: World Health Organization; 2021.
[20]

Du F, Xie L, Zhang Y, Gao F, Zhang H, Chen W, et al. Prospective comparison of QFT‐GIT and T‐SPOT.TB assays for diagnosis of active. Tuberculosis Sci Rep. 2018;8(1):5882. https://doi.org/10.1038/s41598‐018‐24285‐3

[21]

Petruccioli E, Chiacchio T, Navarra A, Vanini V, Cuzzi G, Cimaglia C, et al. Effect of HIV‐infection on QuantiFERON‐plus accuracy in patients with active tuberculosis and latent infection. J Infect. 2020;80(5):536–46. https://doi.org/10.1016/j.jinf.2020.02.009

[22]

Günther G, Saathoff E, Rachow A, Ekandjo H, Diergaardt A, Marais N, et al. Clinical evaluation of a line‐probe assay for tuberculosis detection and drug‐resistance prediction in Namibia. Microbiol Spectr. 2022;10(3):e0025922. https://doi.org/10.1128/spectrum.00259‐22

[23]

Moore DA, Roper MH. Diagnosis of smear‐negative tuberculosis in people with HIV/AIDS. Lancet. 2007;370(9592):1033–4. https://doi.org/10.1016/S0140‐6736(07)61474‐3

[24]

Luetkemeyer AF, Kendall MA, Wu X, Lourenço MC, Jentsch U, Swindells S, et al. Evaluation of two line probe assays for rapid detection of Mycobacterium tuberculosis, tuberculosis (TB) drug resistance, and non‐TB Mycobacteria in HIV‐infected individuals with suspected TB. J Clin Microbiol. 2014;52(4):1052–9. https://doi.org/10.1128/JCM.02639‐13

[25]

Kim YW, Seong MW, Kim TS, Yoo CG, Kim YW, Han SK, et al. Evaluation of Xpert(®) MTB/RIF assay: diagnosis and treatment outcomes in rifampicin‐resistant tuberculosis. Int J Tubercul Lung Dis. 2015;19(10):1216–21. https://doi.org/10.5588/ijtld.15.0183

[26]

Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, Tahirli R, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet. 2011;377(9776):1495–505. https://doi.org/10.1016/S0140‐6736(11)60438‐8

[27]

Bahr NC, Nuwagira E, Evans EE, Cresswell FV, Bystrom PV, Byamukama A, et al. Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV‐infected adults: a prospective cohort study. Lancet Infect Dis. 2018;18(1):68–75. https://doi.org/10.1016/S1473‐3099(17)30474‐7

[28]

Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N, et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2014;2014(1):Cd009593. https://doi.org/10.1002/14651858.CD009593.pub2

[29]

Davis AG, Rohlwink UK, Proust A, Figaji AA, Wilkinson RJ. The pathogenesis of tuberculous meningitis. J Leukoc Biol. 2019;105(2):267–80. https://doi.org/10.1002/JLB.MR0318‐102R

[30]

Pink F, Brown TJ, Kranzer K, Drobniewski F. Evaluation of Xpert MTB/RIF for detection of Mycobacterium tuberculosis in cerebrospinal fluid. J Clin Microbiol. 2016;54(3):809–11. https://doi.org/10.1128/JCM.02806‐15

[31]

Donovan J, Cresswell FV, Thuong NTT, Boulware DR, Thwaites GE, Bahr NC, et al. Xpert MTB/RIF ultra for the diagnosis of tuberculous meningitis: a small step forward. Clin Infect Dis. 2020;71(8):2002–5. https://doi.org/10.1093/cid/ciaa473

[32]

Chakravorty S, Simmons AM, Rowneki M, Parmar H, Cao Y, Ryan J, et al. The new Xpert MTB/RIF ultra: improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point‐of‐care testing. mBio. 2017;8(4):e00812–17. https://doi.org/10.1128/mBio.00812‐17

[33]

Esmail A, Tomasicchio M, Meldau R, Makambwa E, Dheda K. Comparison of Xpert MTB/RIF (G4) and Xpert Ultra, including trace readouts, for the diagnosis of pulmonary tuberculosis in a TB and HIV endemic setting. Int J Infect Dis. 2020;95:246–52. https://doi.org/10.1016/j.ijid.2020.03.025

[34]

Opota O, Mazza‐Stalder J, Greub G, Jaton K. The rapid molecular test Xpert MTB/RIF ultra: towards improved tuberculosis diagnosis and rifampicin resistance detection. Clin Microbiol Infect. 2019;25(11):1370–6. https://doi.org/10.1016/j.cmi.2019.03.021

[35]

Zifodya JS, Kreniske JS, Schiller I, Kohli M, Dendukuri N, Schumacher SG, et al. Xpert Ultra versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin resistance in adults with presumptive pulmonary tuberculosis. Cochrane Database Syst Rev. 2021;2(5):CD009593. https://doi.org/10.1002/14651858.CD009593.pub5

[36]

Yuan LY, Li Y, Wang M, Ke ZQ, Xu WZ. Rapid and effective diagnosis of pulmonary tuberculosis with novel and sensitive loop‐mediated isothermal amplification (LAMP) assay in clinical samples: a meta‐analysis. J Infect Chemother. 2014;20(2):86–92. https://doi.org/10.1016/j.jiac.2013.07.003

[37]

Nakiyingi L, Nakanwagi P, Briggs J, Agaba T, Mubiru F, Mugenyi M, et al. Performance of loop‐mediated isothermal amplification assay in the diagnosis of pulmonary tuberculosis in a high prevalence TB/HIV rural setting in Uganda. BMC Infect Dis. 2018;18(1):87. https://doi.org/10.1186/s12879‐018‐2992‐1

[38]

WHO guidelines approved by the Guidelines Review Committee. The use of loop‐mediated isothermal amplification (TB‐LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. Geneva: World Health Organization Copyright © World Health Organization 2016.

[39]

Spooner E, Reddy S, Ntoyanto S, Sakadavan Y, Reddy T, Mahomed S, et al. TB testing in HIV‐positive patients prior to antiretroviral treatment. Int J Tubercul Lung Dis. 2022;26(3):224–31. https://doi.org/10.5588/ijtld.21.0195

[40]

Peter JG, Zijenah LS, Chanda D, Clowes P, Lesosky M, Gina P, et al. Effect on mortality of point‐of‐care, urine‐based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV‐positive hospital inpatients: a pragmatic, parallel‐group, multicountry, open‐label, randomised controlled trial. Lancet. 2016;387(10024):1187–97. https://doi.org/10.1016/S0140‐6736(15)01092‐2

[41]

Minion J, Leung E, Talbot E, Dheda K, Pai M, Menzies D. Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta‐analysis. Eur Respir J. 2011;38(6):1398–405. https://doi.org/10.1183/09031936.00025711

[42]

Shah M, Hanrahan C, Wang ZY, Dendukuri N, Lawn SD, Denkinger CM, et al. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in HIV‐positive adults. Cochrane Database Syst Rev. 2016;2016(5):Cd011420. https://doi.org/10.1002/14651858.CD011420.pub2

[43]

Gupta‐Wright A, Peters JA, Flach C, Lawn SD. Detection of lipoarabinomannan (LAM) in urine is an independent predictor of mortality risk in patients receiving treatment for HIV‐associated tuberculosis in sub‐Saharan Africa: a systematic review and meta‐analysis. BMC Med. 2016;14(1):53. https://doi.org/10.1186/s12916‐016‐0603‐9

[44]

Bjerrum S, Schiller I, Dendukuri N, Kohli M, Nathavitharana RR, Zwerling AA, et al. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in people living with HIV. Cochrane Database Syst Rev. 2019;10(10):Cd011420. https://doi.org/10.1002/14651858.CD011420.pub3

[45]

Shah M, Dowdy D, Joloba M, Ssengooba W, Manabe YC, Ellner J, et al. Cost‐effectiveness of novel algorithms for rapid diagnosis of tuberculosis in HIV‐infected individuals in Uganda. Aids. 2013;27(18):2883–92. https://doi.org/10.1097/QAD.0000000000000008

[46]

Scott L, da Silva P, Boehme CC, Stevens W, Gilpin CM. Diagnosis of opportunistic infections: HIV co‐infections ‐ tuberculosis. Curr Opin HIV AIDS. 2017;12(2):129–38. https://doi.org/10.1097/COH.0000000000000345

[47]

Bjerrum S, Broger T, Székely R, Mitarai S, Opintan JA, Kenu E, et al. Diagnostic accuracy of a novel and rapid lipoarabinomannan test for diagnosing tuberculosis among people with human immunodeficiency virus. Open Forum Infect Dis. 2020;7(1):ofz530. https://doi.org/10.1093/ofid/ofz530

[48]

Broger T, Sossen B, du Toit E, Kerkhoff AD, Schutz C, Ivanova Reipold E, et al. Novel lipoarabinomannan point‐of‐care tuberculosis test for people with HIV: a diagnostic accuracy study. Lancet Infect Dis. 2019;19(8):852–61. https://doi.org/10.1016/S1473‐3099(19)30001‐5

[49]

Li Z, Tong X, Liu S, Yue J, Fan H. The value of FujiLAM in the diagnosis of tuberculosis: a systematic review and meta‐analysis. Front Public Health. 2021;9:757133. https://doi.org/10.3389/fpubh.2021.757133

[50]

Huerga H, Bastard M, Lubega AV, Akinyi M, Antabak NT, Ohler L, et al. Novel FujiLAM assay to detect tuberculosis in HIV‐positive ambulatory patients in four African countries: a diagnostic accuracy study. Lancet Global Health. 2023;11(1):e126–e35. https://doi.org/10.1016/S2214‐109X(22)00463‐6

[51]

Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, et al. CRISPR‐Cas12a target binding unleashes indiscriminate single‐stranded DNase activity. Science. 2018;360(6387):436–9. https://doi.org/10.1126/science.aar6245

[52]

Sam IK, Chen YY, Ma J, Li SY, Ying RY, Li LX, et al. TB‐QUICK: CRISPR‐Cas12b‐assisted rapid and sensitive detection of Mycobacterium tuberculosis. J Infect. 2021;83(1):54–60. https://doi.org/10.1016/j.jinf.2021.04.032

[53]

Nikolayevskyy V, Kranzer K, Niemann S, Drobniewski F. Whole genome sequencing of Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks: a systematic review. Tuberculosis. 2016;98:77–85. https://doi.org/10.1016/j.tube.2016.02.009

[54]

Papaventsis D, Casali N, Kontsevaya I, Drobniewski F, Cirillo DM, Nikolayevskyy V. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clin Microbiol Infect. 2017;23(2):61–8. https://doi.org/10.1016/j.cmi.2016.09.008

[55]

Song N, Tan Y, Zhang L, Luo W, Guan Q, Yan MZ, et al. Detection of circulating Mycobacterium tuberculosis‐specific DNA by droplet digital PCR for vaccine evaluation in challenged monkeys and TB diagnosis. Emerg Microb Infect. 2018;7(1):78–9. https://doi.org/10.1038/s41426‐018‐0076‐3

[56]

Cho SM, Shin S, Kim Y, Song W, Hong SG, Jeong SH, et al. A novel approach for tuberculosis diagnosis using exosomal DNA and droplet digital PCR. Clin Microbiol Infect. 2020;26(7):942–e1. https://doi.org/10.1016/j.cmi.2019.11.012

[57]

Cao Y, Wang L, Ma P, Fan W, Gu B, Ju S. Accuracy of matrix‐assisted laser desorption ionization‐time of flight mass spectrometry for identification of mycobacteria: a systematic review and meta‐analysis. Sci Rep. 2018;8(1):4131. https://doi.org/10.1038/s41598‐018‐22642‐w

[58]

Heyckendorf J, Georghiou SB, Frahm N, Heinrich N, Kontsevaya I, Reimann M, et al. Tuberculosis treatment monitoring and outcome measures: new interest and new strategies. Clin Microbiol Rev. 2022;35(3):e0022721. https://doi.org/10.1128/cmr.00227‐21

[59]

Horne DJ, Royce SE, Gooze L, Narita M, Hopewell PC, Nahid P, et al. Sputum monitoring during tuberculosis treatment for predicting outcome: systematic review and meta‐analysis. Lancet Infect Dis. 2010;10(6):387–94. https://doi.org/10.1016/S1473‐3099(10)70071‐2

[60]

Berhanu RH, David A, da Silva P, Shearer K, Sanne I, Stevens W, et al. Performance of Xpert MTB/RIF, Xpert Ultra, and Abbott RealTime MTB for diagnosis of pulmonary tuberculosis in a high‐HIV‐burden setting. J Clin Microbiol. 2018;56(12). https://doi.org/10.1128/JCM.00560‐18

[61]

Aggerbeck H, Ruhwald M, Hoff ST, Borregaard B, Hellstrom E, Malahleha M, et al. C‐Tb skin test to diagnose Mycobacterium tuberculosis infection in children and HIV‐infected adults: a phase 3 trial. PLoS One. 2018;13(9):e0204554. https://doi.org/10.1371/journal.pone.0204554

[62]

WHO Guidelines Approved by the Guidelines Review Committee. WHO consolidated guidelines on tuberculosis: module 3: diagnosis – tests for tuberculosis infection. Geneva: World Health Organization; 2022.

[63]

Nathavitharana RR, Cudahy PG, Schumacher SG, Steingart KR, Pai M, Denkinger CM. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug‐resistant tuberculosis: a systematic review and meta‐analysis. Eur Respir J. 2017;49(1):1601075. https://doi.org/10.1183/13993003.01075‐2016

[64]

Ravanshad R, Karimi Zadeh A, Amani AA.‐O, Mousavi SM, Hashemi SA, Savar Dashtaki A, et al. Application of nanoparticles in cancer detection by Raman scattering based techniques. Nano Rev Exp. 2017;9(1):1373551. https://doi.org/10.1080/20022727.2017.1373551

[65]

Kaewseekhao B, Nuntawong N, Eiamchai P, Roytrakul S, Reechaipichitkul W, Faksri K. Diagnosis of active tuberculosis and latent tuberculosis infection based on Raman spectroscopy and surface‐enhanced Raman spectroscopy. Tuberculosis. 2020;121:101916. https://doi.org/10.1016/j.tube.2020.101916

[66]

Ullah U, Tahir Z, Qazi O, Mirza S, Cheema MI. Raman spectroscopy and machine learning‐based optical probe for tuberculosis diagnosis via sputum. Tuberculosis. 2022;136:102251. https://doi.org/10.1016/j.tube.2022.102251

[67]

Botta R, Chindaudom P, Eiamchai P, Horprathum M, Limwichean S, Chananonnawathorn C, et al. Tuberculosis determination using SERS and chemometric methods. Tuberculosis determination using SERS and chemometric methods. 2018;108:195–200. https://doi.org/10.1016/j.tube.2017.12.008

[68]

Kruh‐Garcia NA, Wolfe LM, Chaisson LH, Worodria WO, Nahid P, Schorey JS, et al. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM‐MS. PLoS One. 2014;9(7):e103811. https://doi.org/10.1371/journal.pone.0103811

[69]

Lyu L, Zhang X, Li C, Yang T, Wang J, Pan L, et al. Small RNA profiles of serum exosomes derived from individuals with latent and active tuberculosis. Front Microbiol. 2019;10:1174. https://doi.org/10.3389/fmicb.2019.01174

[70]

Mirzaei RA.‐O, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini‐Fard SR, Keyvani H, et al. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med. 2021;27(1):34. https://doi.org/10.1186/s10020‐021‐00296‐1

[71]

Kaushik AC, Wu Q, Lin L, Li H, Zhao L, Wen Z, et al. Exosomal ncRNAs profiling of mycobacterial infection identified miRNA‐185‐5p as a novel biomarker for tuberculosis. Briefings Bioinf. 2021;22(6):bbab210. https://doi.org/10.1093/bib/bbab210

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 February 2023
Revised: 31 March 2023
Accepted: 03 April 2023
Published: 10 May 2023
Issue date: June 2023

Copyright

© 2023 The Authors. Tsinghua University Press.

Acknowledgements

ACKNOWLEDGMENTS

The authors wish to acknowledge and thank all participants for their contributions.

Rights and permissions

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return