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Abstract
Purpose – The purpose of this paper is to develop a proof-of-concept (POC) Forward Collision Warning (FWC) system for the motorcyclist, which
determines a potential clash based on time-to-collision and trajectory of both the detected and ego vehicle (motorcycle).
Design/methodology/approach – This comes in three approaches. First, time-to-collision value is to be calculated based on low-cost camera video
input. Second, the trajectory of the detected vehicle is predicted based on video data in the 2 D pixel coordinate. Third, the trajectory of the ego
vehicle is predicted via the lean direction of the motorcycle from a low-cost inertial measurement unit sensor.
Findings – This encompasses a comprehensive Advanced FWC system which is an amalgamation of the three approaches mentioned above. First, to
predict time-to-collision, nested Kalman filter and vehicle detection is used to convert image pixel matrix to relative distance, velocity and time-to-
collision data. Next, for trajectory prediction of detected vehicles, a few algorithms were compared, and it was found that long short-term memory
performs the best on the data set. The last finding is that to determine the leaning direction of the ego vehicle, it is better to use lean angle
measurement compared to riding pattern classification.
Originality/value – The value of this paper is that it provides a POC FWC system that considers time-to-collision and trajectory of both detected and
ego vehicle (motorcycle).
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1. Introduction

As technology advances, there is an increase in vehicle safety
systems such as autonomous driving and Advanced Driving
Assistance System (ADAS). Still, these did not lower the number
of accident deaths. Unfortunately, Road Traffic Accidents (RTA)
still increase from 1.25 to 1.35 million casualties globally between
2015 and 2018, according to the World Health Organization
(WHO). This discrepancy is because the people who need this
safety feature do not have the purchasing power for such
technologies. This is evident by the fact that 93% of road fatalities
come from the less developed nations. ADAS is expensive because
it requires the use of many expensive sensors and to increase
adoption, it is essential to create a low cost ADAS.

Unfortunately, Vulnerable Road Users (VRUs) such as
cyclist and motorcyclist, which accounts for more than 50% of
fatalities, do not have ready access to such sensors on their
vehicles as ADAS are mainly made for cars. Hence, the next
best alternative is to create an ADAS, which can tap onto
smartphone hardware for VRUs. This paper will focus on the
advanced Forward Collision Warning (FCW) system using
only a monocular camera and an Inertial Measurement Unit
(IMU), which both can be found onmost smartphones.
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This paper intends to develop an Advanced Forward
Collision Warning system that is capable of predicting if a
collision will occur based on time-to-collision and considering
the trajectory of the detected vehicle and the leaning direction
of the ego vehicle. To develop this, the paper must tackle three
challenges which are tackled in Sections 2, 3 and 4 accordingly.
The first challenge is the difficulty of obtaining time-to-

collision for the FCW system based on using a single camera
module as a camera. This is because cameras are designed
primarily to capture images and not measure distance. This
challenge will be tackled in Section 2. The second challenge is
to predict the trajectory of the detected vehicle despite the ever-
changing dynamics of the traffic situation. This challenge will
be tackled in Section 3. The last challenge is to predict the
leaning direction of the ego vehicle using an IMU sensor which
is subjected to the high vibration frequency of the motorcycle,
which can go up to 1Ghz. This challenge will be tackled in
Section 4.

1.1 Scope of work
The scope of work is the proof of concept of the proposed
advanced FCW (ADAS) system based on a single camera and
low-cost IMU for motorcycles. The following aspects are
presented to design and develop ADAS using low-cost sensors
for motorcycles:
� Time-to-collision algorithm based on low-cost camera

input, lightweight vehicle detection and nested Kalman
filter.

� Trajectory prediction of vehicle coordinates algorithm to
predict the future positions of the detected vehicle using
the Long Short-TermMemory (LSTM)method.

� Low-cost IMU to determine motorcycle direction of lean.

1.2 Limitation
This section will present the assumptions and limitations of
using the low-cost camera and IMU.
For calculation of relative distance and speed for time-to-

collision, an ideal camera lens must be used such that the
image follows the lens equation. However, in real life,
the image captured has distortion and does not completely
follow the lens equation, which will result in a deviation
between the actual distance and distance calculated.
Furthermore, time-to-collision is only calculated from the
frontal axis, and potential collision from the lateral axis is
not considered. Next, the accuracy of the distance detected
also depends on the vehicle detection algorithm, and it runs
on an assumed width of a vehicle which defers between
vehicles.
For trajectory prediction, it is a challenge to predict a trend

that is independent of past history. Hence, it is challenging to
detect if a vehicle were to suddenly change direction in a
completely abnormal way, such as very sudden swerving or
braking.
Lastly, measuring lean direction for motorcyclists is

subjected to the vibrations that amotorcycle produces.

1.3 Literature review
FCW encompasses many different sensors. These sensors help
drivers to drive better through visual feedback, control and

warnings to drive safer. This paper will focus on FCW, which
uses a camera and IMU sensor only. In the paper by Zhao et al.
(2014), a look-up-table (LUT) is used based on the shadow
length of the vehicle in the image to deduce the distance. This
means that the distance is calculated beforehand, and the LUT
is not easily transferable as it is based on the position of the
camera on the car. In the papers by Lim et al. (2018) and Salari
and Ouyang (2013), it uses the width of the vehicle to obtain
the distance and the time-to-collision data. However, the paper
by Salari and Ouyang (2013), does not show how it filters the
data as using this method is very noisy, and the article by Lim
et al. (2018) shows a nested Kalman filter for displacement and
velocity individually, but both of them can be combined into a
single Kalman filter which requires less computational power.
Similar to the paper by Lim et al. (2018), this paper will use
computer vision and obtain distance based on width, but it uses
the nested Kalman filter in a different way where it first uses a
Kalman filter on relative distance and speed and the
subsequent filter on time-to-collision based on a constant
velocitymodel.
Next, another important feature is trajectory prediction of

the vehicles in the vicinity. This is because if the system
knows the trajectories of the vehicles based on their path
history, it can extrapolate and determine if there will be a
potential collision from these trajectories. While trajectory
prediction is a heavily researched field in the realms of
autonomous cars, it mainly uses expensive sensors like lidar
for forecasting. As such, this paper will focus on using such
algorithms using only camera and IMU data for prediction.
There are many papers that use machine learning and deep
neural network algorithms which are used as a reference for
this paper’s trajectory prediction. They are articles by Lim
et al. (2019), Goli et al. (2018), Heravi and Khanmohammadi
(2011), Park et al. (2018).
Apart from the neural network and machine learning, the

Kalman filter is excellent at forecasting as it uses a state
model for estimation. In the papers by Schulz et al. (2018),
Lim et al. (2018), Kalman filter is used for forecasting as it
can forecast 1-step ahead by comparing between the
kinematic model and measurements value. Kalman filter
can also predict h-steps ahead without the measurement
update using its state transition matrix. Moving average is
also another forecasting technique that is proven useful, as
shown in the paper by Lauren and Harlili (2014),
Alghamdi et al. (2019), Radziukynas and Klementavicius
(2014), Sulandari and Yudhanto (2015). Moving average,
Kalman filter, and LSTM will be compared further in
Section 3.
Lastly, it is important to obtain information about the ego

vehicle for a better warning system. There are various ways to
quantify the ego vehicle direction, which are roll angle and
riding pattern classification. First, roll angle measurements will
determine if the ego vehicle is leaning toward the left or right.
Next, riding pattern classification can be used to determine if a
motorcyclist is changing lanes, making a turn or moving
straight depending on the labels of the training set. IMU can be
used to measure roll angle and riding pattern classification. To
get accurate roll angle measurement, sensor fusion must be
applied as IMU sensors are known to be subjected to noise and
drift. In the paper by Hossam-E-Haider et al. (2017), sensor
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fusion is applied to IMU sensors, and it shows and compares
complementary and Kalman filter, which is important in
understanding which filter is more applicable to this paper.
Next, to perform riding pattern detection, it involves time
series classification. ADAS uses many methods for time series
classification, from lane change detection to dangerous driving
classification. For example, in the paper by lane changing
maneuvers are classified with LSTM and GRU, respectively.
Further modifications can be done to the architecture, such as
using 1D CNN, CNN-LSTM, LSTM encoder decoder such
as which can improve the results. This paper will use and
compare some of these algorithms.
The next section will explain the basics of a FCW System

and the reason why it is important to have a nested Kalman
filter for prediction.

2. Nested Kalman filter based forward collision
warning

A FCW system is a safety feature that warns the user that
there is a frontal collision. It not only requires the ego
vehicle to be able to detect frontal vehicles but also to
quantify it through relative distance, velocity, acceleration
and time-to-collision. This is a challenge because a
monocular camera does not have the luxury of using sensor
fusion to get a better estimation of distance. Hence the
camera sensor will be used as a single sensor used to measure
multiple measurements such as relative distance and speed.
To measure distance and speed, this section will explain
how a vehicle detection algorithm can be used to measure
the distance from bounding box width and derive the
relative distance, speed between the detected and ego
vehicle. The output of the vehicle detection algorithm will
be used as inputs for the first Kalman filter. Next, using the
output of the first Kalman filter, the time-to-collision is
calculated. This time-to-collision data is further filtered as
zero, and negative speeds will result in very noisy data.
After the data filtering, a second Kalman filter is used to
remove the noise and unwanted data, hence the nested
Kalman filter.
The algorithm will be explained in the following steps as

seen in Figure 1 – (2.1) relative distance, speed estimation
based on boundary box width, (2.2) Kalman filter to
stabilized estimated relative distance and speed, (2.3) time-
to-collision calculation and lastly, (2.4) nested Kalman filter
for time-to-collision. The vehicle detection algorithm that is
used will be using the You-Only-Look-Once detection
algorithm because it has proven to be state of the art with
extremely fast processing speed of up to 244 frames per
second (fps) with reasonable accuracy of 78.6 mean average
precision (maP) by Redmon et al. (2016). The output of the
YOLO boundary box coordinates to obtain the boundary box
width and height will be used for distance estimation, and the
bounding box center coordinates will be used for trajectory
prediction. For this paper, the assumption is that the
difference between the bounding box left and right limit will
correspond to the pixel width of the car. This means that
vehicles that are not directly in front of the ego vehicle will
have a larger error for distance estimated as the boundary box
width is the variable that calculates the distance. For the

nested Kalman filter FCW system. Both YOLO and Support
Vector Machines (SVM) were used for this section, and
YOLO was chosen because it was able to perform faster with
20 FPS.

2.1 Relative distance, speed estimation based on
boundary box width
The distance between the ego vehicle and the detected vehicles
can be calculated directly from an image with a known vehicle
width or height. However, every car model will have a slightly
different width and height and to get an accurate estimated
distance which means that the algorithmmust be able to detect
different models of cars. To reduce complexity, the vehicle
width of cars is assumed to be 1.8 meters, and width estimation
is used for distance estimation as the variance of car width is
smaller than that of car heights. For example, a sports car’s
height is low while a Sport Utility Vehicle (SUV) car height is
much higher. The width of both sports car and SUV are
relatively similar. The formula to calculate distance from
vehicle width or height is as follows:

Dt ¼ fW
wt

(1)

whereW is the physical width of the car inmeters,wt is the pixel
width of the vehicle at time t, f is the focal length of the camera
lens in meters. Dt is the relative distance from the ego vehicle
to the detected vehicle in meters. From the distance in
equation (1), the relative speed can be derived easily with Dt.
While these formulas seem relatively easy to use, it is also under
the assumption that the camera lens is an ideal lens that does
not have spherical aberration, and a method to reduce this
uncertainty will be to undistort the image for camera
calibration. This can be addressed by using theOpenCV library
function cv2.undistort() to calibrate the camera with respect to
a chessboard.

Figure 1 Nested Kalman filter steps
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2.2 Kalman filter to stabilized estimated relative
distance and speed
After estimating the distance from the boundary box width, the
data must be stabilized due to the noise of the boundary box
width data. It is important to filter and smooth this data
because this noise and error generated will be brought forward
in the calculation of time-to-collision. In this section, the
Kalman filter is used to stabilize the estimated relative distance
and speed. The Kalman filter algorithm is as follow (where x
and ˙x represents the relative distance and speed of the vehicle
detected):
Firstly, initialize theKalman filter with estimates of x̂0 andP0.

Where x̂0 ¼ xt¼0

xt¼0

� �
; P0 ¼ 1 0

0 1

� �

Next, the Kalman filter will project the state and error
covariance ahead in equations 2 and 3. Equation (2) is a state-
space model where the priori estimate is based on the state
transitionmatrixFt�1.

x̂�
t ¼ Ft�1x̂1

t�1 1 Bt�1ut�1 (2)

P�
t ¼ Ft�1P1

t�1F
T
t�1 1Qt�1 (3)

where Ft21 =
1 Dt
0 1

� �
and u=0u = 0, as there is no control

input based on the constant velocity model. Next, the Kalman
gain is computed in equation (4) for the measurement update
step in equation (5).

Kt ¼P�
t H

T
t HtP�

t H
T
t 1Rt Þ�1

�
(4)

x̂1
t ¼ x̂�

t 1Kt zt �Htx̂�
tð Þ (5)

zt ¼ 1 1
� � xt

xt

� �
(6)

zt refers to the measurement of the relative distance and speed
detected. The last step of the Kalman filter is to update the
error covariance in equation (7).

P1
t ¼ I�KtHtð ÞP�

t (7)

Equation (7) is the last step and the Kalman filter repeats from
equations (2) to (7) continuously to estimate future values of
relative distance and speed of up to t 1 1. Moreover, the
Kalman filter is computationally efficient because it only needs
to remember the last step, allowing quick computation.

2.3 Time-to-collision calculation
Time-to-collision (TTC) can be derived as follows:

TTC ¼ Dt

vt
(8)

Time-to-collision will be used as a measure of how much of a
threat is a detected vehicle to the ego vehicle. The threshold of

the danger warning is set to 4 s. The danger warning can be
improved using simplified notification through sound alerts or
blinking external light sources.

2.4 Nested Kalman filter for time-to-collision
After time-to-collision is calculated, the data must be further
manipulated. This is because the time-to-collision data is
heavily dependent on Dt and vt. When vt is negative, the time-
to-collision is negative, which has to be removed. When vt is
zero, the time-to-collision will be infinity which will result in a
spike. Next, time-to-collision data should only be used within a
range of interest. There is not much value in recording time-to-
collision data with the conditions mentioned above. Hence,
when velocity is zero, negative or if the time-to-collision data is
above a certain threshold, it will return the threshold value.
This will be further demonstrated in the simulation section.
In the next section, trajectory prediction of vehicle pixel

center coordinates using LSTM neural network will be
comparedwith existing time series forecastingmethods.

3. Trajectory prediction model

Trajectory prediction is very important in the advanced FCW
system because by understanding the trajectory of the detected
vehicle, the FCW algorithmwill have more time to alert the ego
vehicle if there will be a potential collision. The trajectory
prediction input data is based on pixel center coordinates of the
detected vehicle using the object detection algorithm in the
previous section to obtain time-series data denoted by:

y ¼ y1; y2; . . . ; ytð Þ

x ¼ x1; x2; . . . ; xtð Þ
With the inputs above, the objective is to map xt, yt, to xt1h, yt1h

coordinates which are h steps ahead denoted by:

yprediction ¼ y1 1 h; y21 h; . . . ; yt1 hð Þ

xprediction ¼ x11 h; x21 h; . . . ; xt1 hð Þ

To quantify the effectiveness between algorithms for trajectory
prediction, it has to be compared with basic kinematics
forecasting such as a constant velocity model. In this section,
the comparison will be with simple moving average constant
velocity model, Kalman filter forecasting, and LSTM model
using root mean square error to quantify the performance.

3.1Moving average forecasting
Moving average is defined as a succession of averages derived
from successive segments of a series of values. It is simple to
use, but it comes with an increased lag for increased smoothing
based on the number of data points used for the moving
average. Moving average (MA) can be computed with the
following equation:

MAn ¼
Pn

i¼1 di
n

(9)

where di refers to the data points and n is the number of points
for the moving average. Moving average for forecasting can be
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done by using the predicted value based on past values as the
actual value for the next prediction. However, this method
converges quickly to the mean of the last few data points.
Hence, instead of this forecasting method, a moving average
will be used on the data, and the difference between xt and xt�1

will bemultiplied by h to forecast h steps ahead.

3.2 Kalman filter forecasting
Instead of using a simple moving average filter, a Kalman filter
forecasting is used for comparison. In Section 2, the Kalman
filter is used to estimate distance and speed based on the pixel
width of the bounding box, which predicts a 1 step ahead
estimation. For trajectory prediction, it is required to predict h
steps estimation instead, and it uses pixel coordinates and pixel
velocities as its input to the Kalman filter. To predict h steps
ahead, the state-space model is recursively used instead of the
measurement equation.

3.3 Long short-termmemory
The last part of this section will introduce deep learning for
trajectory prediction based on the LSTMmodel. LSTMmodels
have proven themselves useful and effective in many time series
applications. However, LSTM on vehicle pixel center
coordinates has yet to be explored, and this section will explain
further the LSTM model and the pre and post-processing
required. The key principle of an LSTM is its cell state and the
various gates: the input gate, output gate and forget gate. The
following explains the operations of anLSTMcell:

it ¼ s Wi ht�1; xt½ � 1bið Þ (10)

f t ¼ s Wf ht�1; xt½ � 1bf
� �

(11)

ot ¼ s Wo ht�1; xt½ � 1boð Þ (12)

ct ¼ f t � ct�1 1 it � tanh Wc ht�1; xt½ � 1bcð Þ (13)

ht ¼ ot � tanh ctð Þ (14)

where
it : represents input gate;
ft : represents forget gate;
ot : represents output gate;
s : represents sigmoid function;
wx : weight for respective gate(x) neurons;
ht�1: output of the previous LSTMblock;
xt : input of current timestamp; and
ct : cell state(memory).
The gates 10,11,12 determine how the LSTM forget and
updates its information and the cell state and output are
updated according to equations (13) and (14). To use LSTM
for time series forecasting, it is important to rescale the data as
LSTM is very sensitive to the scale of input data. Hence, pre-
and post-processing are required. First, the input data has to be
rescaled to the range of 0 to 1. Next, the data will be used as
input for the LSTM, and the output of the LSTM will then be
rescaled back accordingly. Tensorflow Abadi et al. (2016) is
used for the LSTM time series forecasting training and testing.

This section has covered the various algorithms for trajectory
prediction of vehicle center coordinates, and the experimental
results will be shown in Section 5. In the next section, the IMU
sensor will be used to augment the FCW system by providing
information on the lean direction of the ego vehicle.

4. Leaning direction of ego vehicle

This section will explore two different approaches to find the
leaning direction. The first approach involves measuring
the leaning angle of the motorcycle with respect to the ground.
The second approach involves using machine learning
and neural network to perform riding pattern classification, and
both methods will be compared in terms of how it can better
augment the FCWby providing information of the ego vehicle.

4.1 Leaning angle of ego vehicle
The first method to detect the leaning angle of the ego vehicle
and the assumption is that a lean to the right will correspond to
the rightwards trajectory of the ego vehicle, and a lean to the left
will correspond to the leftwards trajectory accordingly. To
detect the leaning angle, a gyroscope and an accelerometer are
required, which can be found in an IMU. The gyroscope is
used to detect a change in lean angle, and the accelerometer is
used to measure the gravity force, which will then be used to
calculate for lean angle. These two sensors are combined with
the use of a complementary filter or Kalman filter for leaning
angle detection. To calculate the lean angle, the accelerometer
sensor is used to detect the gravity, and when the ego vehicle is
standing upright, the accelerometer will detect an acceleration
of 1 g at w = 0°. When w is 90°, a will be 0 g. The equation for
phi, w , detected by the accelerometer is as follows:

w ¼ 90
� � arccos

a
g

� �
(15)

While both sensors can detect the lean angle individually, each
sensor has its pros and cons, and a sensor fusion between these
sensors will produce a more reliable result. An accelerometer
sensor measures all forces acting on it, which includes
vibration, centripetal and coriolis acceleration which makes it
only reliable in static lean angle detection and better in the long
term. On the other hand, the gyroscope is not susceptible to
external force detected, and it is able to measure the angular
rate of change precisely, but the integration over time of angle
rate will result in drift with the angle not returning to zero.
Hence, the idea of using sensor fusion is to use each sensor to
make up for the other sensor’s weaknesses, and this can be done
with a complementary filter or a Kalman filter.
As seen in Figure 2, both accelerometer and gyroscope lean

angle measurement are full of noise as compared to Figure 6
and hence not reliable. This subsection will explain how both
complementary filter and Kalman filter is necessary for lean
angle detection, and it will evaluate which filter is better.

4.1.1 Complementary filter sensor fusion
In order for both sensors to complement each other, the data
from the accelerometer sensor will be passed through a low pass
filter while the gyroscope data will be pass through a high pass
filter, and the complementary filter can be described as follows:
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angle ¼ a � angle1 gyrData � dtð Þ 1 1 � að Þ � accData
(16)

From the equation above, it is observed that the parameters
affecting the angle is only the a value, and it does not have any
information on the output filtered data.

4.1.2 Kalman filter sensor fusion
On the other hand, in Kalman filter, the output filtered data is
used as an input for the next iteration as it is an iterative process
which aims to find the statistically optical value. Unlike the
Kalman filter in Section 2, lean angle and angular velocity are
used as state vector instead of relative distance and speed. This
subsection has explained how the lean angle is measured using
Kalman filter and complementary filter. The next section will
use machine learning and neural networks in classifying riding
patterns to predict the leaning direction of the ego vehicle.

4.2 Riding pattern classification
The objective of the riding pattern classification is to detect
riding maneuvers such as moving straight, turning and lane
change to predict the trajectory of the ego vehicle.
Similar to the time series prediction in Section 3, riding

pattern classification involves the input of a time series array,
but the output will be a single class. For this paper, the classes
of interest will be as follows: Moving straight (S); Left Turn
(LT); Right Turn (RT); Left lane change (LLC); Right lane
change (RLC); and Others (O). Similar to the time series
prediction in section 3.3, the algorithm used for time series
classification will be the LSTM. Instead of training the network
on regression outputs of vehicle center coordinates in Section
3, the training outputs will be the six classes. In the next
section, simulation and results will be shown based on collected
data which will be used to test and evaluate the respective
algorithms.

5. Simulation and results

For this paper, the data was collected from a smartphone
(Huawei Mate 20 Pro) which is mounted vertically onto a
Honda TA-200 motorcycle to collect IMU and video data,
which are in sync. The IMU sensor is the model lsm6dsm
which consists of both an accelerometer and gyroscope. For the

video recording, the video is recorded at 29.97 frames per
second, and the IMU data are recorded at 10hz and 50hz. For
nested Kalman filter and trajectory prediction, the video data
recorded will be used for testing and evaluation. For leaning
direction prediction, both IMU data of 10hz and 50hz are
used. The simulation results are based on an 11 second 330
frames video, and the respectively IMU data is recorded
accordingly.

5.1 Nested Kalman filter simulation and results
For this subsection, the objective is to quantify stabilization,
and root mean square error is used for comparison to the
ground truth. While the video is recorded without the use of an
external sensor to detect parameters such as distance, speed
and time-to-collision, the ground truth is to be estimated. The
ground truth is estimated by using the scipy.signal.filtfilt in
python, and this is done as this filter is able to filter forward and
backward with no time shift, and it is post-processing, so it
cannot be done in real-time to replace Kalman filter.

5.1.1 Results on relative distance and speed
In Figure 3, it shows how the Kalman filter can reduce noise.
From Table 1, it shows that the reduction in noise for relative
distance seemsminimal from0.49 to 0.34.
Still, there is a large noise reduction for the relative velocity

from 18.2 to 2.93, and this is important especially for the
calculation of time-to-collision, which depends on both values.

5.1.2 Results on time-to-collision
Figure 4 (left) shows the time-to-collision without using any
filter for relative speed and velocity. Hence, the first Kalman
filter is very important, especially for the relative speed velocity
as the root mean square error is reduced by a factor of 6.2.
Figure 4 (Right) shows the time-to-collision graph after
removing negative velocities, zero velocity, and time-to-
collision above the threshold of 8 s as any value above 8 s does
not contribute much to the warning system and only makes the
data noisier. By comparing both figures, the first Kalman filter
is necessary to make this time-to-collision warning useful. As
seen in Table 2, the RMSE is reduced from 4.05 to 1.23 to 0.72
from unfiltered to using the first Kalman filter for relative
distance and speed and lastly with the nested Kalman filter.

Figure 2 Lean angle using accelerometer and gyroscope individually

Forward collision warning system

Qun Lim et al.

Journal of Intelligent and Connected Vehicles

Volume 4 · Number 3 · 2021 · 93–103

98



For time-to-collision analysis, false positives will also be used to
quantify the improvement in time-to-collision. From above, it
is observed that most instances of time-to-collision without
Kalman filter create false positive. While this experiment does
not include other sensors to detect actual distance and relative
velocity, a true FCW will be assumed to be the instance
whereby both time-to-collision (with nested Kalman filter) and
time-to-collision (with first Kalman filter) agrees that the value
is equal or less than 4 s. Through this method, the total false
positive has been reduced from26 to 2.

5.2 Trajectory prediction experimental results
The experiment is conducted using the same video as Section
2. The (x,y) center vehicle coordinates from YOLO are
compiled into a list. This data will be used for the trajectory
prediction experiment. This subsection will quantify trajectory
prediction by comparing the root mean squared error (MSE)
for moving average forecasting, Kalman filter forecasting and
LSTM neural network. For all of the algorithms mentioned
above, the experiment aims to predict h= 20 steps ahead.

From Table 3, it is evident that LSTM forecasting is the best as it
is able to achieve the lowest root mean square error value. This is
expected as LSTM applications have been on the rise due to their
proven performances. Moreover, the deep neural network has
been becoming more popular as it does not require feature
extraction as required in traditional machine learning algorithms.
The performance comparison between the algorithmns can be
seen inFig 5.

5.3 Leaning direction prediction simulation and results
5.3.1 Results on leaning angle detection
For leaning angle detection, the 50hz IMU data was used. For
the complementary filter, the accelerometer and gyroscope data

Figure 3 Relative distance and speed with Kalman filter

Table 1 RMSE of relative distance and speed

Root mean square error Relative distance Relative speed

Without filtered 0.49 18.3
Kalman filter 0.34 2.92

Figure 4 Time-to-collision without using any filter (Left) and with nested Kalman filter (Right)

Table 2 RMSE of time-to-collision

Root mean square error Time-to-collision

Without filter 4.05
With first Kalman filter 1.23
Nested Kalman filter 0.72

Table 3 RMSE of trajectory prediction algorithm

RMSE x pixel coordinates y pixel coordinates

Moving average forecasting 357 174.4
Kalman filter forecasting 857.7 42.6
LSTM forecasting 120.5 15.8
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are first passed through a low and high pass filter at 3 hz cutoff
frequency, respectively. Next, the a = 0.1 is used. For Kalman
filter, the noise for the accelerometer and gyroscope are first
measured and theQ= 0.06 is used.
As seen in Figure 6, both filters are able to filter out most of

the noise decently. While the complimentary filter seems
smoother than the Kalman filter in Figure 6 above, it,
however, has more spikes. Moving forward, Kalman filter is
selected to be used for algorithm integration as it is able to
find the optimal statistical value for the next data point
with feedback from the latest measured data, but the
complementary filter does not.
This subsection shows the experimental result on the lean

angle is measured using Kalman filter and complementary
filter. The next section will show the experimental result for
riding pattern classification.

Figure 5 Trajectory prediction summary

Figure 6 Lean angle using complementary and Kalman filter

Figure 7 LSTM confusion matrix

Forward collision warning system

Qun Lim et al.

Journal of Intelligent and Connected Vehicles

Volume 4 · Number 3 · 2021 · 93–103

100



5.3.2 Results on riding pattern classification
For riding pattern classification, the 10hz IMU data was used as
a higher sampling rate will result in increased data inputs for
LSTM, which makes it more complex. After processing with
time step 40 and time shift of 20 and under-sampling, the data is
trained for riding pattern classification. Initially, the network was

trained with the six classes, which are Moving straight (S); Left
Turn (LT); Right Turn (RT); Left lane change (LLC); Right
lane change (RLC); and Others (O). The LSTM model will be
compared with a Support Vector Machine (SVM) time series
classificationmodel using the toolkit byTavenard et al. (2020).
However, upon training and testing on both LSTM and SVM,

it was realized that the raw data labeled for “Right lane change,”
“Left lane change” and “Moving straight” are not very
distinguishable as seen in Figure 7. This is because the sensors
are unable to pick up any distinguishable pattern betweenmoving
straight and lane change as motorcycles only require a slight lean
to change lanes. Another hypothesis is motorcycles move straight
when changing lanes, but the straight movement does not
correspond to the road lanes which allows them to change lane.
Next, to improve performance of the classification, the

classes “Left lane change” and “Right lane change” were
dropped from the data set and this new data set is which
resulted in a rise in performance in terms of accuracy and the
confusion matrix. As seen in Figure 7, there is significantly less
confusion between the classes now that “Left lane change” and
“Right lane change” are removed. The improved in
performance is also reflected in the accuracy of the model as
LSTM and SVM were able to achieve 83.0% and 80.3%,
respectively. While 83.0% classification accuracy is not the

Figure 8 Algorithms integrated example

Figure 9 Algorithms integrated flowchart
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best, the performance can be increase with a bigger data set and
longer training time. With this algorithm, riding pattern
classification can be used to predict the leaning direction as a
“Left turn” and “Right turn”will indicate a left and right lean.

5.3.3 Comparison
In this subsection, using Kalman filter to find leaning angle and
using LSTM for riding pattern classification will be compared
to see which approaches can better augment the FCW system
with leaning direction prediction. Because both approaches are
fundamentally different in terms of input, output and time step,
the metric of comparison will be how the algorithm is more
applicable to the FCW system which is in terms of reaction
time. Reaction time for the algorithm is very important for
FCW system, which is why it will be used as a metric for
comparison. In the Kalman filter, there is barely a lag to
produce the output of leaning angle estimate as the algorithm
only uses the previous data to estimate the roll angle. Hence, for
Kalman filter, the reaction time will be 1-time step which is
0.1 s if a 10hz data is used for leaning angle estimation.
However, for LSTM, it requires an array of inputs with a pre-
defined time step length, and the time step length used is 40-
time steps for a good prediction. This means that for a data
sampling frequency of 10hz, it requires 4 s of data input before
it can classify a riding pattern. 4 s is too long a time frame for an
effective FCW system. For the training of the LSTM above,
shorter time step length was used for training as well, but it did
not produce any promising results. Hence, in terms of reaction
time for the algorithm, Kalman filter leaning estimation will be
the better option.

5.4 Advanced forward collision warning simulation
The algorithms discussed in Sections 2, 3 and 4 can be run
independently from each other, and to integrate them together,
additional steps must be done. The additional steps are

segregating the image into different regions and having a threshold
for the roll angle measurement. The image will be segmented into
3 parts which indicates left, straight or right and these regions will
be used to classify where does the trajectory of the vehicle detected
fall under. Similarly, the roll angle will have a threshold that
classify if a bike is leaning to the left, straight or right.
As seen in Figure 8, there are a few other elements in the

picture as compared to normal vehicle detection. At the top, it
shows words in green that describe the direction the ego vehicle
is moving. From the image, it says that the bike is moving
straight. This indicates the direction of the ego vehicle. Below
it, it shows a “WARNING” message in blue, and the warning
signal will only trigger under the correct conditions. In the
image, it has two vertical blue lines, which indicate the left,
straight and right regions of the image. These regions are based
on x pixel threshold, and it will indicate if a detected vehicle
trajectory is within one of these regions. Toward the bottom of
the image, there is a green bounding box with the numbers 2.34
on the top left of the green box. The green box indicates the
bounding box
From the YOLOmodel and the number represents the time-

to-collision in seconds. Beside the green box, there is a red dot
that indicates the center pixel coordinates of the vehicle
detected h = 20 steps ahead. From this image, it shows that
while the trajectory is toward the left of the green box, the
trajectory is still within the straight region of the image. As the
bike motion is classified as straight, the trajectory direction is
classified as straight, and the time-to-collision value is less than
the threshold, the blue “WARNING” signal is shown. This
signal can be in other forms, such as a blinking light or beeping
sound for the user to be notified.
Figure 9 shows the flowchart for the Advanced FCW system,

which integrates the time-to-collision nested Kalman filter,
trajectory prediction with LSTM and IMU roll angle using
Kalman filter. As seen in the chart, the Advanced FCW starts

Figure 10 Screenshot of the Advanced Forward CollisionWarning system
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off with the time-to-collision calculation as it is the most
important factor in quantifying a danger. It is only after the
time-to-collision value is below a certain threshold whereby the
algorithm starts to predict the trajectory of the vehicle center
pixel. This is arranged in such an order because trajectory
prediction does not need to be run at every frame to reduce
computational power. Next, because the IMU roll angle
Kalman filter is run using a different sensor with different
sampling rates, it runs individually from the time-to-collision
calculation, and the position of roll angle with Kalman filter is
just for illustration purposes. To use roll angle in the warning
system, it must be synced with the sampling rate of the video,
and interpolation and estimation can be used to sync them
together. Next, after the trajectory prediction and IMU roll
angle measurement, both data will be subjected to certain
conditions which classify the direction of the ego and detected
vehicle. When both classes are the same, and when the time-to-
collision is below the set threshold, a warning signal will be
triggered to alert the user of potential danger.
Figure 10 shows the screenshot at various parts of the

Advanced FCW system across the 330 frames. It is observed
that the car moves across the screen from right to left, and
finally, a warning signal was given at the bottom right
screenshot as the conditions follow Figure 9.

6. Conclusion

The goal of this paper is to develop an advanced FCW system for
VRUs such asmotorcyclists. This paper presents the various aspects
of an Advanced FCW system which can be implemented
independently or together.As seen in the results, the number of false
positives for time-to-collision warning has been significantly
reduced, which is very important to a motorcyclist on the road.
Furthermore, as this advanced FCW system only requires a
monocular camera and an IMU sensor, it can be implemented on a
smartphone and thus increasing adoption and practicality rather
than spending lots ofmoney on additional hardware.
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