Skip to main content
Log in

Red organic light-emitting diodes based photobiomodulation therapy enabling prominent hair growth

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hair loss can cause psychological distress. Here, red organic light-emitting diode (OLED) light source is first introduced as the photobiomodulation therapy (PBMT) for hair growth and demonstrated as a promising and non-invasive therapeutic modality for alopecia. OLED exhibits unique advantages of homogeneous irradiation, flexible in form factor, and less heat generation. These features enable OLED to be an ideal candidate for wearable PBMT light sources. A systematic study of using red OLEDs to facilitate hair growth was conducted. The results show that OLEDs excellently promote hair regrowth. OLED irradiation can increase the length of the hair by a factor of 1.5 as compared to the control, and the hair regrowth area is enlarged by over 3 times after 20 days of treatments. Moreover, the mechanism of OLED that stimulates hair follicle regeneration is investigated in-vivo by conducting a systematic controlled experiments on mice with or without OLED PBMT. Based on the comprehensive histological and immunofluorescence staining studies, two key factors are identified for red OLEDs to facilitate hair follicle regeneration: (i) increased autophagy during the anagen phase of the hair growth cycle; (ii) increased blood oxygen content promoted by the accelerated microvascular blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pratt, C. H.; King, L. E. Jr.; Messenger, A. G.; Christiano, A. M.; Sundberg, J. P. Alopecia areata. Nat. Rev. Dis. Prim. 2017, 3, 17011.

    Google Scholar 

  2. Pirastu, N.; Joshi, P. K.; de Vries, P. S.; Cornelis, M. C.; McKeigue, P. M.; Keum, N.; Franceschini, N.; Colombo, M.; Giovannucci, E. L.; Spiliopoulou, A. et al. GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nat. Commun. 2017, 8, 1584.

    Google Scholar 

  3. Bhat, J.; Birch, J.; Whitehurst, C.; Lanigan, S. W. A single-blinded randomised controlled study to determine the efficacy of Omnilux Revive facial treatment in skin rejuvenation. Lasers Med. Sci. 2005, 20, 6–10.

    Google Scholar 

  4. Russell, B. A.; Kellett, N.; Reilly, L. R. A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation. J. Cosmet. Laser Ther. 2005, 7, 196–200.

    CAS  Google Scholar 

  5. Degitz, K. Phototherapy, photodynamic therapy and lasers in the treatment of acne. J. Dtsch. Dermatol. Ges. 2009, 7, 1048–1054.

    Google Scholar 

  6. Hædersdal, M.; Togsverd-Bo, K.; Wulf, H. C. Evidence-based review of lasers, light sources and photodynamic therapy in the treatment of acne vulgaris. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 267–278.

    Google Scholar 

  7. Carrasco, E.; Calvo, M. I.; Blázquez-Castro, A.; Vecchio, D.; Zamarrón, A.; de Almeida, I. J. D.; Stockert, J. C.; Hamblin, M. R.; Juarranz, Á.; Espada, J. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing. J. Invest. Dermatol. 2015, 135, 2611–2622.

    CAS  Google Scholar 

  8. Santos, Z.; Avci, P.; Hamblin, M. R. Drug discovery for alopecia: Gone today, hair tomorrow. Expert Opin. Drug Discov. 2015, 10, 269–292.

    CAS  Google Scholar 

  9. Lanzafame, R. J.; Blanche, R. R.; Bodian, A. B.; Chiacchierini, R. P.; Fernandez-Obregon, A.; Kazmirek, E. R. The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg. Med. 2013, 45, 487–495.

    Google Scholar 

  10. Fushimi, T.; Inui, S.; Ogasawara, M.; Nakajima, T.; Hosokawa, K.; Itami, S. Narrow-band red LED light promotes mouse hair growth through paracrine growth factors from dermal papilla. J. Dermatol. Sci. 2011, 64, 246–248.

    CAS  Google Scholar 

  11. Tsai, S. R.; Hamblin, M. R. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B:Biol. 2017, 170, 197–207.

    CAS  Google Scholar 

  12. Silveira, F. M.; de Paglioni, M. P.; Marques, M. M.; Santos-Silva, A. R.; Migliorati, C. A.; Arany, P.; Martins, M. D. Examining tumor modulating effects of photobiomodulation therapy on head and neck squamous cell carcinomas. Photochem. Photobiol. Sci. 2019, 18, 1621–1637.

    CAS  Google Scholar 

  13. Salehpour, F.; Mahmoudi, J.; Kamari, F.; Sadigh-Eteghad, S.; Rasta, S. H.; Hamblin, M. R. Brain photobiomodulation therapy: A narrative review. Mol. Neurobiol. 2018, 55, 6601–6636.

    CAS  Google Scholar 

  14. Salehpour, F.; Hamblin, M. R. Photobiomodulation for Parkinson’s disease in animal models: A systematic review. Biomolecules 2020, 10, 610.

    CAS  Google Scholar 

  15. Cotler, H. B.; Chow, R. T.; Hamblin, M. R.; Carroll, J. The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop. Rheumatol. 2015, 2, 00068.

    Google Scholar 

  16. Chung, H.; Dai, T. H.; Sharma, S. K.; Huang, Y. Y.; Carroll, J. D.; Hamblin, M. R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533.

    Google Scholar 

  17. Barolet, D. Light-emitting diodes (LEDs) in dermatology. Semin. Cutan. Med. Surg. 2008, 27, 227–238.

    CAS  Google Scholar 

  18. Kim, W. S.; Calderhead, R. G. Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser Ther. 2011, 20, 205–215.

    Google Scholar 

  19. Calderhead, R. G.; Kim, W. S.; Ohshiro, T.; Trelles, M. A.; Vasily, D. B. Adjunctive 830 nm light-emitting diode therapy can improve the results following aesthetic procedures. Laser Ther. 2015, 24, 277–289.

    Google Scholar 

  20. Suchonwanit, P.; Chalermroj, N.; Khunkhet, S. Low-level laser therapy for the treatment of androgenetic alopecia in Thai men and women: A 24-week, randomized, double-blind, sham device-controlled trial. Lasers Med. Sci. 2019, 34, 1107–1114.

    Google Scholar 

  21. George, S.; Hamblin, M. R.; Abrahamse, H. Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts. J. Photochem. Photobiol. B:Biol. 2018, 188, 60–68.

    CAS  Google Scholar 

  22. Weiss, R. A.; McDaniel, D. H.; Geronemus, R. G.; Weiss, M. A. Clinical trial of a novel non-thermal LED array for reversal of photoaging: Clinical, histologic, and surface profilometric results. Lasers Surg. Med. 2005, 36, 85–91.

    Google Scholar 

  23. Hamblin, M. R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361.

    CAS  Google Scholar 

  24. Sasabe, H.; Kido, J. Development of high performance OLEDs for general lighting. J. Mater. Chem. C 2013, 1, 1699–1707.

    CAS  Google Scholar 

  25. Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110.

    CAS  Google Scholar 

  26. Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238.

    CAS  Google Scholar 

  27. Wu, S. F.; Li, S. H.; Wang, Y. K.; Huang, C. C.; Sun, Q.; Liang, J. J.; Liao, L. S.; Fung, M. K. White organic LED with a luminous efficacy exceeding 100 lm·W−1 without light out-coupling enhancement techniques. Adv. Funct. Mater. 2017, 27, 1701314.

    Google Scholar 

  28. Huang, C. C.; Zhang, Y. J.; Zhou, J. G.; Sun, S. Q.; Luo, W.; He, W.; Wang, J. N.; Shi, X. B.; Fung, M. K. Hybrid tandem white OLED with long lifetime and 150 lm·W−1 in luminous efficacy based on TADF blue emitter stabilized with phosphorescent red emitter. Adv. Opt. Mater. 2020, 8, 2000727.

    CAS  Google Scholar 

  29. Lian, C.; Piksa, M.; Yoshida, K.; Persheyev, S.; Pawlik, K. J.; Matczyszyn, K.; Samuel, I. D. W. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy. npj Flex. Electron. 2019, 3, 8.

    Google Scholar 

  30. Jeon, Y.; Choi, H. R.; Lim, M.; Choi, S.; Kim, H.; Kwon, J. H.; Park, K. C.; Choi, K. C. A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects. Adv. Mater. Technol. 2018, 3, 1700391.

    Google Scholar 

  31. Jeon, Y.; Choi, H. R.; Kwon, J. H.; Choi, S.; Nam, K. M.; Park, K. C.; Choi, K. C. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine. Light Sci. Appl. 2019, 8, 114.

    CAS  Google Scholar 

  32. Kim, T. H.; Kim, N. J.; Youn, J. I. Evaluation of wavelength-dependent hair growth effects on low-level laser therapy: An experimental animal study. Lasers Med. Sci. 2015, 30, 1703–1709.

    Google Scholar 

  33. Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165.

    Google Scholar 

  34. Van Tran, V.; Chae, M.; Moon, J. Y.; Lee, Y. C. Light emitting diodes technology-based photobiomodulation therapy (PBMT) for dermatology and aesthetics: Recent applications, challenges, and perspectives. Opt. Laser Technol. 2021, 135, 106698.

    CAS  Google Scholar 

  35. Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y. H.; Yu, K. J.; Cheng, H. Y.; Shi, M. X.; Bian, Z. G.; Liu, Z. J.; Kim, Y. S. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944.

    CAS  Google Scholar 

  36. Lee, H. E.; Lee, S. H.; Jeong, M.; Shin, J. H.; Ahn, Y.; Kim, D.; Oh, S. H.; Yun, S. H.; Lee, K. J. Trichogenic photostimulation using monolithic flexible vertical AlGaInP light-emitting diodes. ACS Nano 2018, 12, 9587–9595.

    CAS  Google Scholar 

  37. Huelsken, J.; Vogel, R.; Erdmann, B.; Cotsarelis, G.; Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001, 105, 533–545.

    CAS  Google Scholar 

  38. Huang, Y. Y.; Chen, A. C. H.; Carroll, J. D.; Hamblin, M. R. Biphasic dose response in low level light therapy. Dose Response 2009, 7, 358–383.

    Google Scholar 

  39. Jeon, Y.; Choi, H. R.; Park, K. C.; Choi, K. C. Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J. Soc. Inf. Disp. 2020, 28, 324–332.

    CAS  Google Scholar 

  40. Sundman, A. S.; Van Poucke, E.; Svensson Holm, A. C.; Faresjö, Å.; Theodorsson, E.; Jensen, P.; Roth, L. S. V. Long-term stress levels are synchronized in dogs and their owners. Sci. Rep. 2019, 9, 7391.

    Google Scholar 

  41. Gilhar, A.; Etzioni, A.; Paus, R. Alopecia areata. N. Engl. J. Med. 2012, 366, 1515–1525.

    CAS  Google Scholar 

  42. Chueh, S. C.; Lin, S. J.; Chen, C. C.; Lei, M. X.; Wang, L. M.; Widelitz, R.; Hughes, M. W.; Jiang, T. X.; Chuong, C. M. Therapeutic strategy for hair regeneration: Hair cycle activation, Niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Expert Opin. Biol. Ther. 2013, 13, 377–391.

    CAS  Google Scholar 

  43. Gundamaraju, R.; Lu, W. Y.; Paul, M. K.; Jha, N. K.; Gupta, P. K.; Ojha, S.; Chattopadhyay, I.; Rao, P. V.; Ghavami, S. Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2022, 1868, 166431.

    CAS  Google Scholar 

  44. Cheng, L. Z.; Li, W.; Chen, Y. X.; Lin, Y. J.; Miao, Y. Autophagy and diabetic encephalopathy: Mechanistic insights and potential therapeutic implications. Aging Dis. 2022, 13, 447–457.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 61875144, 91959104, 21927803, 51903182, and 51525203), the National Research Programs of China (No. 2020YFA0211100), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices (No. ZZ2102), and the Science and Technology Development Fund, Macau SAR (Nos. 0006/2021/AKP and 0051/2021/A). This work is also supported by the Collaborative Innovation Center of Suzhou Nano Science and Technology (No. NANO-CIC) and the 111 Project and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Chen, Man-Keung Fung or Shuit-Tong Lee.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, SQ., Shen, JJ., Wang, YF. et al. Red organic light-emitting diodes based photobiomodulation therapy enabling prominent hair growth. Nano Res. 16, 7164–7170 (2023). https://doi.org/10.1007/s12274-022-5315-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5315-1

Keywords

Navigation