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ABSTRACT 
In the 21st century, the rapid development of human society has made people’s demand for green energy more and more 
urgent. The high-energy-density hydrogen energy obtained by fully splitting water is not only environmentally friendly, but also 
is expected to solve the problems caused by the intermittent nature of new energy. However, the slow kinetics and large 
overpotential of the oxygen evolution reaction (OER) limit its application. The introduction of Te element is expected to bring new 
breakthroughs. With the least electronegativity among the chalcogens, the Te element has many special properties, such as 
multivalent states, strong covalentity, and high electrical conductivity, which make it a promising candidate in electrocatalytic 
OER. In this review, we introduce the peculiarities of Te element, summarize Te doping and the extraordinary performance of 
its compounds in OER, with emphasis on the scientific mechanism behind Te element promoting the OER kinetic process. 
Finally, challenges and development prospects of the applications of Te element in OER are presented. 
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1 Introduction 
From the perspective of historical development, every energy 
innovation of human beings is a huge progress in human 
technology and social development [1]. Nowadays, human 
beings mainly rely on fossil energy, but the problems of non- 
renewable fossil energy and the destruction of the ecological 
environment caused by the exploitation and use of fossil 
energy have become more and more serious [2]. Humans  
have begun to face severe challenges such as energy depletion 
and climate deterioration, but human demand for energy is 
increasing day by day. So we have to find new green energy 
to replace traditional fossil energy, such as wind energy, 
water energy, and solar energy [3, 4]. It is a pity that these new 
energy sources are all intermittent energy sources. But if they 
are directly integrated into the grid, they will have an impact 
on the grid [5, 6]. So, we need a technology that captures this 
intermittent energy and stores it, such as liquid fuels and 
batteries [7–10]. One of the most attractive solutions is to 
convert these intermittent green energy into hydrogen energy 
to store first, and then use fuel cell technology to generate 
electricity when we need it [11, 12]. And a more attractive way 
of this kind of energy conversion is total water splitting, which 
is completely green and environmentally friendly, with abundant 
raw materials, and is expected to be practical [13]. 

The total water splitting is divided into two half-reactions, 
the cathodic hydrogen evolution reaction (HER) and the anodic 
oxygen evolution reaction (OER) [14]. Among them, OER 
involves the process of four-electron transfer, which is a complex 
proton-coupled electron transfer reaction and is kinetically 
limited and requires a large overpotential to proceed. This 
greatly limits the application of total water splitting [15]. OER 
has been extensively studied in both alkaline and acidic 
electrolyzers. In general, the recognized OER mechanism is the 
adsorbate evolution mechanism (AEM) [16]. There are four 
possible reaction steps under basic conditions as follows: 

* OH *OH e- -+ +                     (1) 

2*OH OH *O H O e- -+ + +               (2) 

*O OH *OOH e- -+ +                  (3) 

2 2*OOH OH H O O e- -+ + +            (4) 

The reaction steps under acidic conditions are as follows: 

2* H O *OH e H- ++ + +                 (5) 

*OH *O e H- ++ +                     (6) 

2*O H O *OOH e H- ++ + +             (7) 
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2*OOH * O e H- ++ + +                (8) 

Among them, * represents the active site of the catalyst. It can 
be seen from the above reaction formulas that OER is essentially 
a heterogeneous reaction of four-electron and -proton coupling, 
which is related to three oxygen intermediates *OH, *O, and 
*OOH at the interface between the catalyst and water. If a 
reversible hydrogen electrode is used as the reference electrode, 
the thermodynamic potential of the OER is 1.23 V (vs. reversible 
hydrogen electrode (RHE)), independent of the electrolyte. In 
fact, the details of the OER reaction are still very complex, and 
a huge kinetic barrier needs to be overcome, which leads to 
the fact that the applied potential for the actual reaction is 
usually much higher than the standard thermodynamic potential 
[17]. Therefore, a great deal of work by countless scientific 
researchers has been devoted to developing an efficient and 
stable OER catalyst. At present, many high-efficiency catalysts 
have been developed, such as RuO2, IrO2, transition metal 
oxides, sulfides, selenides, phosphides, and borides, and the 
overpotential is greatly reduced to less than 200 mV [18–23]. 
Recently, Te metal and its compounds have exhibited 
extraordinary OER activity, becoming a very promising class 
of OER catalysts. 

Te is the 52nd element in the periodic table, belonging to 
the VI A group, and is a member of the chalcogen. Its valence 
electron shell is 4d105s2p4, so it has abundant valence states (such 
as ±2, +4, +6), which also endow it with special electronic 
properties. Since Te is in the fifth period, compared with the  
O, S, and Se in the same group, it has a larger atomic radius 
(1.43 Å) and anion radius (Te2−, 2.21 Å). Electronegativity, 
which describes the ability of an atom to withdraw electrons, 
is another very important parameter. Te possesses a smaller 
electronegativity (2.10), so its ability to capture electrons is 
relatively weak. 

The above characteristics determine that Te is a very special 
metalloid element. Te has abundant valence states, so it can 
play both anion and cation roles in catalysts, with a variety of 
effects in the catalytic process. And the high valence state   
of Te6+ in Te is likely to have a promoting effect in OER. The 
arrangement of the valence electron shell of Te implies that  
it has a special structure and novel electronic properties.   
For example, the crystal of the element Te is composed of 
special helical chains, which are often widely studied as p-type 
thermoelectric materials. Recent studies have shown that 
tellurium crystals are also Weyl semiconductors with special 
topological properties [24]. These topological properties  
hold promise for high mobility, highly stable surfaces, and 
simultaneous charge and spin transport with spin selectivity. 
Taking advantage of these topological properties is expected to 
produce highly active and stable catalysts. Two-dimensional 
(2D) films and one-dimensional (1D) nanowires (NWs) made 
of Te also exhibit topological properties, and can effectively 
tune their electronic structure and carrier mobility by 
compressive strain [25]. Among them, 2D tellurenes have 
recently attracted much attention due to their unique helical 
chain structure and unique physical properties. It not only has 
the characteristics of large specific surface area, no dangling 
bonds and extraordinary stability in the air, but also has theoretical 
ultra-high carrier mobility (i.e., ~ 104–106 cm2·V−1·s−1) and large 
in-plane piezoelectric coefficient [26]. These properties make 
them very suitable for the catalysis [27]. 

Due to its low electronegativity and weak electron-attracting 
ability, Te tends to exhibit stronger metallicity and higher 

electrical conductivity (~ 1,000 S·m−1). Among oxides and 
chalcogenides, tellurides generally exhibit a smaller band 
gap, which is beneficial to improving the conductivity of the 
catalysts for highly active catalytic OER [28]. Moreover, the 
small electronegativity also makes the bonding of Te with other 
metal elements more covalent, and the strong covalentity 
in such metal-anion bonding can often improve the catalytic 
efficiency of OER. From a chemical point of view, the stronger 
the covalent bond between the metal and the anion, the more 
favorable the redox reaction of the metal center. Simultaneously, 
this can adjust the redox energy levels of the conduction band 
and valence band edge to align with water as much as possible, 
which is beneficial to splitting water [29]. The strong covalent 
nature of Te bonding also predicts its great potential in OER 
reactions. 

Tuning the intrinsic activity of the catalyst’s active sites and 
increasing the catalyst’s electric conductivity are expected to 
further improve the catalytic performance, one of which is a 
feasible and very effective solution to add other cations to the 
catalyst. Through advanced characterization methods such  
as in situ Raman and synchrotron radiation, together with 
density functional theory (DFT) calculations, researchers 
have proposed that the active sites of these efficient catalysts 
are several cations, including Ru, Ir, Fe, Co, and Ni [30–34]. 
Among these, the most famous materials are NiFe-LDH  
(LDH = layered double hydroxide) [35–38] (in which Ni and  
Fe synergize), CoCu-LDH [39–41] (in which Co and Cu 
synergize), and high-entropy nanomaterials (those have 
recently attracted extensive attention) [42–44]. Theoretically, 
Te element can exist in the catalyst in the form of Te2+, Te4+, 
and Te6+, which can act synergistically with other cations to 
accelerate the OER process and enhance the intrinsic activity 
of the catalyst. 

Regulation of electrocatalytic efficiency by anions is considered 
to be another promising approach [45]. The anion radius is 
usually larger than the cation radius, so it plays an important 
role in the integrity of the crystal lattice, and the substitution 
of anions exhibits a huge impact on the properties of the 
crystal catalyst. It is generally believed that the influence    
of anions on the catalyst may have the following aspects:   
(1) They adjust the electronic structure of the crystal, such as 
reducing the band gap, increasing the carrier concentration, 
and enhancing the conductivity, thereby improving the 
performance of the catalyst [46]. (2) They form defects, or 
even destroy the crystal lattice and form amorphous structure. 
This can not only change the electronic structure, but also 
increase the surface area and expose more active sites [47, 48]. 
(3) They change the chemical environment and electronic 
structure of the active site, and adjust the adsorption energy of 
intermediate species, so as to achieve a smaller overpotential 
[49]. In recent years, sulfides, selenides, phosphides, borides, 
etc. have all shown excellent catalytic activity, even surpassing 
oxides and hydroxides which are traditionally considered as 
the ideal catalysts. Te can also be added to the catalyst as an 
anion Te2−. Due to the large radius of Te2−, the influence on the 
lattice will be intensive, which is conducive to the formation of 
a large number of defects and the increase of the number of 
active sites. Furthermore, Te2− tends to form strong covalent 
bonds with metal sites, which can adjust the electronic structure 
and enhance the conductivity. 

To sum up, the characteristics of Te element determine its 
special status in OER. As a special kind of semi-metal element, 
it will surely shine in OER. In view of the particularity of Te  
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element and its outstanding properties in OER, it is necessary 
to review its recent progress. We summarize the latest research 
on the applications of Te element in OER from the three parts, 
including Te doping to enhance OER catalyst activity, OER  
of noble metal telluride and OER of transition metal telluride. 
The improved efficiency of Te element doping and the 
mechanism of improving OER efficiency are summarized. 
Finally the issues and challenges on the development of 
Te-contained electrocatalysts are discussed. 

2 Te in oxygen evolution reaction electrocatalyst 

2.1 Tellurium doped catalysts 

To enhance the efficiency of catalysts, doping is a common 
and very effective method [50–54]. Researchers prefer to dope 
good catalysts with Te element to obtain higher OER activity. 
Due to the special electronic structure and small electronegativity 
of Te, Te doping can optimize the conductivity and electronic 
structure of the catalyst, and its large ionic radius also enables 
it to distort the lattice and create defects. Current examples of 
improving the activity of OER catalysts through Te doping will 
be described and summarized below, such as Te-doped 2D 
black phosphorus (BP), metal-organic framework (MOF) 
catalysts, transition metal base-like LDHs, and some highly 
efficient oxides, hydroxides and sulfur genera. 

Regarded as a potential high-performance electrocatalyst, 
2D BP materials have received wide interest due to their  
fascinating properties [55], which has small band gap [56, 57], 
excellent room temperature hole mobility [58, 59] and large 

specific surface area [60]. In 2016, Yang, Bingchao et al. [61] 
introduced Te element into BP crystal. They successfully 
doped BP with a low concentration of Te (0.1% atomic ratio) 
through a high-voltage technique, and found that it promoted 
the hole mobility at room temperature (> 1,850 cm2·V−1·s−1) and 
enhanced the environmental stability. However, this high- 
voltage scheme is difficult to accomplish a high-concentration 
doping. Zhang, Z. M et al. [62] synthesized high-concentration 
doped and high-quality Te-doped BP single crystals by a 
chemical vapor transport (CVT) method in 2018 (Fig. 1(a)). 
After Te-doped BP nanosheets were obtained by a liquid phase 
exfoliation, they were deposited on a glassy carbon electrode 
to test the electrocatalytic performance. Compared with the 
undoped BP counterparts, Te-doped BP nanosheets exhibited 
obviously improved OER efficiency (Fig. 1(b)). The possible 
reason is that the radius and electronegativity of Te atoms are 
quite different from those of P atoms. The introduction of Te 
atoms into the lattice composed of P anions of BP crystals 
showed a huge impact on the lattice and changed the charge 
distribution and electronic properties of the crystals, thereby 
affecting the interaction of BP nanosheets with oxygen 
intermediates. In order to further explore the mechanism 
behind the dramatic performance improvement and reveal the 
specific active sites and microstructure of the catalyst at the 
atomic scale, Zhu, J. F. et al. [63] performed DFT calculations 
on Te-doped BP. First-principles calculations showed that Te  
atoms preferred to bond with each other and form a cluster 
in BP, and they could be further stabilized by various intrinsic 
defects (Stone-Wales, single-vacancy defects, and zigzag 
nanoribbons). The synergistic effect of the clusters formed by 

 
Figure 1 (a) Model of Te doped 2D BP. Black atoms represent BP, and blue atoms represent Te. (b) The LSV curves of the few-layer undoped and 
Te-doped BP nanosheets in 1 M KOH. (c) Model of MOF. It has a high specific surface area, which is beneficial to OER. (d) The LSV curves of the Te, Cl 
co-doped in 1 M KOH. (e) Model of Te doped NiCo-LDH. Purple atoms represent Te. (f) The LSV curves of the Te doped NiCo-LDH in 1 M KOH. Panels 
(a) and (b): reproduced with permission from Ref. [62], © American Chemical Society 2018. Panel (c): reproduced with permission from Ref. [64], © the 
Partner Organisations 2021. Panel (d): reproduced with permission from Ref. [65], © Elsevier B. V. 2022. Panels (e) and (f): reproduced with permission 
from Ref. [79], © Zhang, D. et al. 2022. 
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Te dopants and the inherent defects in BP reduced the binding 
strength of *O and optimized the adsorption energy of the 
intermediate species, thereby enhancing the catalytic activity 
of BP. 

MOFs are another class of promising materials for water 
electrocatalysis, which possess a large number of active sites 
but low electrical conductivity (Fig. 1(c)) [64]. In order to 
improve its electric conductivity to further enhance the 
catalytic activity, doping Te becomes a good choice. In 2022, 
Keemin Park et al. [65] used chemical vapor deposition (CVD) 
to dope MOFs with Te, and achieved growing 2D nanosheets 
composing of Te and Cl co-doped NiFe MOFs on nickel foam. 
It showed a highly efficient OER in alkaline electrolyte with an 
overpotential of only 224 mV at 30 mA·cm−2 (Fig. 1(d)) and a 
stability of over 120 h. X-ray photoelectron spectroscopy (XPS) 
measurements demonstrated that Te behaved as a +4-valent 
cation in the catalyst, which significantly increased the oxidation 
state of Fe at the active site. This, thereby, adjusted the 
adsorption energy, improved the charge transfer process, and 
accelerated OER. In addition, MOF materials are often used to 
prepare porous carbon derivatives because of their porosity, 
large specific surface area, metal centers, and organic ligand 
binding. In 2022, Chengsi Hu et al. [66] successfully synthesized 
Te-doped ZnCo-MOF-derived porous carbon nanotubes 
(ZnCo-Te@NCs) by an in-situ formation and sacrificial 
template method on Te nanotube templates. Through XPS 
results, they found that Te exhibited both Te4+ and Te2−.    
In O2-saturated 0.1 M KOH solution, the overpotential was 
400 mV at 10 mA·cm−2, which was better than that of IrO2 
(426 mV). Meanwhile, the catalysts also exhibited excellent 
bifunctional electrocatalytic properties for application in zinc-air 
batteries with a large peak current density of 259.7 mW·cm−2 
and excellent cycling durability. 

Transition metal-based LDHs are also efficient OER catalysts, 
to which researchers have paid great attention [67, 68]. However, 
the application of these LDH materials as high-performance 
electrocatalysts is restricted by slow electron transport kinetics 
and instability due to their intrinsic low conductivity [69]. 
Metalloid-Te doping is expected to solve this problem. 
Metalloids can accept electrons from transition metals and 
then transfer electrons to adjacent oxygen atoms, which can 
lead to localized regions of electron enrichment or electron 
depletion on the surface of LDHs, thereby achieving the purpose 
of tuning the active site [70, 71]. Moreover, the electronic 
coupling interaction between the metalloid sp orbital and 
the metal d orbital can adjust the d orbital center and 
increase the density of electronic states near the Fermi level, 
thereby improving the conductivity of LDH [72]. In 2021, 
Lee, J. I. et al. [73] used a simple solvothermal method to 
grow Te-doped NiCo LDHs on 3D porous nickel foam 
(Fig. 1(e)). The doped Te preferentially entered the edge sites 
of transition metals (the true active sites in LDHs) and 
underwent strong covalent p–d hybridization with transition 
metals to form highly polarized local electronic structures. 
This enhanced the capability to accept the electron of OH− 
and thus significantly enhanced the electrocatalytic OER 
activity. Among them, when the stoichiometric ratio of Te to 
Co was 0.6, the catalyst exhibited the best OER activity with 
extremely low overpotentials of 290 and 330 mV at 10 and 
100 mA·cm−2, respectively, and the Tafel slope was 45.48 mV·dec−1. 
Electrochemical impedance spectroscopy (EIS) manifested 
that Te-doped NiCo LDHs (the stoichiometric ratio of Te to 
Co is 0.6) had a small charge transfer resistance (Rct ~ 8 Ω), 

which implied that Te incorporation played an important role 
in facilitating the transfer of charges between the catalyst 
surface and the adsorbed reactants. In the same year, they  
also grew Te-doped Ni(OH)2 crystallites on nickel foam by a 
hydrothermal method, which reached 10 and 100 mA·cm−2 at 
overpotentials of only 270 and 285 mV , and a very small Tafel 
slope of 26.9 mV·dec−1 in alkaline medium [74]. As metalloids 
can form strong covalent bonds with transition metals and can 
have various coordination forms, they can also play a role in 
stabilizing catalysts [75]. There are usually two phases of LDHs, 
namely α-phase and β-phase. α-phase LDHs display high 
activity but poor stability, which is very easy to transform  
into low-activity β-phase under alkaline conditions [76–78]. 
In 2022, Zhang, D. et al. [79] tried to use Te to improve the 
stability of the catalyst, and prepared honeycomb Te-doped 
NiCo LDHs through controllable anodic electrodeposition 
(ED) by a dynamic oxygen bubble template approach, which 
achieved an ultra-low overpotential of 221 mV at 10 mA·cm−2 
(Fig. 1(f)). The doped Te existed in the form of Te4+ and had 
almost no effect on the valence states of other elements, which 
indicated that Te had no activity in the electrochemical reaction 
process. The X-ray diffraction (XRD) characterizations of the 
catalysts before and after the catalytic reaction indicated that 
honeycomb Te-doped NiCo LDHs still maintained the α phase 
with high catalytic activity after the electrochemical process 
under alkaline conditions, displaying unexpectedly excellent 
stability. 

Besides, Te doping can improve the activity of some common 
oxides, hydroxides, chalcogenides, etc. In 2019, Wang, Y. et al. 
[80] prepared sandwich-like Te-doped CoTe2xSe2(1−x) catalysts. 
By optimizing the amount of Te doping, the as-obtained catalysts 
possessed better OER performance than those of undoped 
binary pure CoSe2 and CoTe2 species. After composition 
optimization, the sandwich-like Co(Te0.33Se0.67)2 exhibited a 
better OER performance than the most advanced transition 
metal dichalcogenide (TMD) catalysts recently published in 
top journals. It has an onset potential of about 1.48 V, an 
overpotential of about 272 mV, and a Tafel slope of only    
44 mV·dec−1. After 3,000 cycles, the overpotential just exhibited 
a negligible increase. The stability was further investigated by 
chronopotentiometry, and its long-term stability remained 
over 50 h, with only a slight overpotential change of about  
12 mV after 50 h. The authors believed that the slight structure 
distortion and abundant defects produced by Te anion doping 
were beneficial to exposing more active edge sites and enhancing 
the conductivity of the catalyst, which greatly improved the 
OER activity of the catalyst. Ibraheem, S. et al. [81] fabricated 
Te-doped FeNiOOH nanocubes through a controllable 
hydrothermal process. The catalysts simultaneously exhibited 
good OER and HER performance with low overpotentials   
of 167 and 22 mV, respectively, at 10 mA·cm−2. Transmission 
electron microscopy (TEM) manifested that Te doping still 
retained its unique nanocubic structure, ensuring the exposure 
of its active sites. Te doping can also activate the edge-enriched 
Fe sites and enhance the adsorption capacity of the catalyst to 
oxidize intermediates during the OER/HER process, thereby 
improving the electrocatalytic performance. Wu, X. J. et al. [82] 
crafted Te-doped iron-based catalysts with crystalline and 
amorphous nanosheet structures on iron foams by CVD and 
ED methods, in which amorphous catalysts exhibited more 
pronounced electrocatalytic OER performance in alkaline 
electrolyte, requiring only an overpotential of 264.4 mV to 
reach a current density of 10 mA·cm−2 and a Tafel slope of  
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54.2 mV·dec−1. The reason for the high activity is that the 
unique nanosheet morphology of the catalyst exposed more 
catalytically active sites, guaranteed the faster electron transfer 
and higher catalytic kinetics caused by Te doping. Li, G. R.  
et al. [83] prepared Te-doped Co3O4 nanomaterials by a simple 
hydrothermal method, obtaining an overpotential as low as 
313 mV and a Tafel slope of 75 mV·dec−1, which is superior to 
pure Co3O4 materials. XPS showed that Te existed in the form 
of Te2−. TEM showed that the large-radius Te ions distorted 
the lattice and limited the growth of the crystal, thereby 
exposing more active sites. Raman analysis showed that Te 
doping led to the emergence of a large number of oxygen 
vacancies, which modulated the electronic structure of the 
crystal. It can be seen that the improvement of the catalytic 
performance is the result of the combined effect of the 
increase of active sites and oxygen vacancies. 

In conclusion, Te doping is an effective method to obtain 
high-performance OER catalysts. Te element can be doped as 
either a cation or an anion in a catalyst, which can not only 
improve the OER kinetics, but also improve the catalyst 
stability. 

2.2 Precious metal telluride catalysts  

Noble metal catalysts are very efficient and stable OER catalytic 
materials. Most of the current state-of-the-art OER catalysts 
are Ir and Ru based materials, among which RuO2 and IrO2 
are often used as benchmarks for OER catalysts [18, 84, 85]. 
Compared with non-noble metal catalysts, noble metal-based 
electrocatalysts are more efficient and stable under strongly 
acidic conditions, which makes them more suitable for proton 
exchange membrane (PEM) water electrolyzers [86–88]. PEM 
is considered to be the most promising practical application. 
However, the cost of precious metals is high. The introduction 
of Te element helps reduce the amount of precious metals 
used and is expected to improve catalyst performance. 

Attaching noble metal catalysts to metallic Te is a good 
solution. In 2020, Xu, J. Y. et al. [89] prepared fine IrRu 
intermetallic nanoclusters (IrRu@Te) supported by amorphous 
Te nanoparticles via a one-pot hydrothermal method. The 
IrRu nanoclusters exhibited a large electrochemical specific 
surface area, while the Te nanoparticle supports exhibited high 
electrical conductivity of 606 S·cm−1 and good acid stability. 
DFT calculations showed that coupling the IrRu nanoclusters 
with Te changed the electronic structure of the IrRu nanoclusters, 
resulting in a shift of the density of states and the d-band 
center toward the Fermi level. As a result, IrRu@Te exhibited 
excellent OER catalytic performance, delivering current densities 
of 10 and 100 mA·cm–2 with 220 and 303 mV overpotentials, 
respectively, in a strongly acidic electrolyte of 0.5 M H2SO4. 
The Tafel slope was only 35 mV·dec–1. Stability tests showed that 
IrRu@Te could sustain OER electricity for 20 h at 10 mA·cm–2. 
XPS revealed that both IrRu nanoclusters and Te nanoparticles 
were oxidized during OER, but Te nanoparticles could help 
stabilize IrRu nanoclusters by inhibiting peroxidation and 
dissolution under corrosive and oxidative conditions. 

Another promising solution to achieve high electrocatalytic 
OER efficiency is the preparation of 1D metal nanowires or 
nanotubes (NTs), which have high specific surface area, surface 
coordination unsaturation, and avoid the Ostwald ripening 
and possible occurrence of nanoparticles. The prevention of 
aggregation problem can not only expose more active sites, 
but also provide a pathway for fast electron transport rates 
[90–92]. In 2018, Shi, Q. R. et al. [93] first reported the facile  

synthesis of 1D hollow IrTe nanotubes with dendritic surfaces 
using ultrathin Te nanowires as a sacrificial template and a 
current displacement strategy at 190 °C. Under the acidic 
condition of 0.1 M HClO4, the onset potential of IrTe nanotubes 
was 1.45 V, with a small overpotential of 290 mV and a Tafel 
slope of 60.3 mV·dec–1. Moreover, it still exhibited strong 
structural stability and excellent electrocatalytic durability after 
2,000 cycles of accelerated durability test, although most of  
the Ir on its surface had been oxidized to IrO2 during the OER 
process. Under the neutral condition of 0.1 M phosphate-buffered 
saline (PBS) and the alkaline condition of 1 M KOH, the onset 
potentials of IrTe nanotubes were 1.44 and 1.45 V, respectively, 
and the overpotentials were lower than those of IrO2. It can 
be seen that IrTe nanotubes are a novel class of materials with 
significantly enhanced electrocatalytic activity for OER over  
a wide pH range. Li, L. G. et al. [94] synthesized 1D Ir–Te 
nanowires, Ru–Te nanowires and Pt–Te nanowires using Te 
nanowires as templates (Fig. 2(a)). Among them, 1D porous 
Ir-Te nanowires exhibited the best OER activity with 
overpotentials of 248 and 284 mV at 10 mA·cm−2 in 1 M KOH 
(Fig. 2(b)) and 0.5 M H2SO4 (Fig. 2(c)), respectively. In 2022, 
Liu, M. et al. [95] synthesized ternary RuIrTe nanotubes by 
displacement reaction using pre-synthesized Te nanowires as 
starting materials (Fig. 2(d)). The modified catalyst exhibited 
high catalytic activity for total water splitting in the acidic 
environment of 0.5 M H2SO4, with overpotentials of 29 and   

 
Figure 2 (a) The process of preparing Ir-Te NWs using Te nanowires as 
templates. (b) The LSV curves of the Ir-Te NWs/C, IrO2 and Ir/C in 1 M 
KOH. (c) The LSV curves of the Ir-Te NWs/C, IrO2 and Ir/C in 0.5 M 
H2SO4. (d) The process of preparing RuIrTe NTs. (e) The LSV curves of 
RuIrTe NTs in 0.5 M H2SO4. (f) The LSV curves of the water electrolyzer 
composed of RuIrTe NTs + RuIrTe NTs catalysts at a scan rate of 5 mV·s−1 
in 0.5 M H2SO4. Panels (a)–(c): reproduced with permission from Ref. [94], 
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of 
Springer Nature 2021. Panels (d)–(f): reproduced with permission from 
Ref. [95], © The Royal Society of Chemistry 2022. 
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205 mV for HER and OER, respectively (Fig. 2(e)). The two- 
electrode system assembled with RuIrTe nanotubes could reach 
a cell voltage of only 1.511 V at 10 mA·cm−2 (Fig. 2(f)). The 
main role of Te was to change the surface electronic properties 
of the catalyst, reduce the d-band center of Ir, optimize the 
adsorption energy of intermediate species, and improve the 
conductivity of the catalyst under acidic conditions. 

RuTe2 has also attracted the attention of researchers. In 2019, 
Wang, J. et al. [96] reported through theoretical calculations 
that the amorphous RuTe2 system would exhibit a local 
distortion strain effect, allowing p-d electronic transitions that 
were forbidden in the original crystal structure to be allowed 
(Figs. 3(a) and 3(b)). This was conducive to local flexible 
bonding changes in Te coordination and induced mid- and 
long-range p–π coupling to effectively eliminate the Ru crystal 
field splitting effect and enhance intra-orbital and inter-orbital 
electron transfer (Fig. 3(c)), thereby improving the OER 
performance. They further calculated the bonding and 
antibonding orbitals near the Fermi level, demonstrating the 

p–π electron-rich nature of Te sites (Fig. 3(d)). This indicated 
that Te possessed high electron sensitivity to coupling O 2p 
orbitals for H2O activation. Moreover, the short-range disorder 
promoted the strong electron–lattice coupling effect, which 
contributed to high OER activity under pH-universal conditions. 
They prepared crystalline and amorphous 1D nanorod-like 
RuTe2 (Figs. 3(e) and 3(f)) and found that the overpotential  
of amorphous RuTe2 was as low as 245 mV in 0.5 M H2SO4 
(Fig. 3(g)) and 285 mV in 1 M KOH (Fig. 3(h)), which were 
much lower than those of crystalline RuTe2. At the same time, 
amorphous RuTe2 exhibited excellent corrosion resistance and 
stability. It did not change significantly within 24 h under strong 
acid conditions, and it could still maintain the amorphous 
structure. Electron paramagnetic resonance (EPR) and XPS 
tests showed that there were a large number of defects in the 
amorphous structure (Fig. 3(i)), which would be replaced   
by oxygen atoms to form RuOxHy to promote OER activity.  
In 2020, Tang, B. et al. [97] prepared super tiny RuTe2 
nanoparticles anchored on the graphene nanosheets with an 

 
Figure 3 (a) The band structure of the crystalline RuTe2 (c-RuTe2) with an evident indirect band gap of 0.620 eV. The G, Z, T, Y, S, X, U and R denote 
high-symmetry points in the Brillouin zone. (b) The band structure of the amorphous RuTe2 (a-RuTe2) without any band gap. (c) The projected densities 
of states (PDOSs) of the crystalline (lower image) and amorphous (upper image) RuTe2. The dotted line represents the Fermi level. (d) The real spatial 
contour plots for bonding and anti-bonding orbitals in RuTe2 near EF, demonstrating the p–π electron-rich nature of Te sites. (e) The high-angle annular 
dark-field scanning transmission electron microscopy (HAADF-STEM) image and energy-dispersive X-ray spectroscopy (EDS) elemental mappings of 
the RuTe2. This demonstrates the successful preparation of RuTe2 nanorods. (f) The selected area electron diffraction (SAED) pattern of RuTe2, 
demonstrating that it is amorphous. (g) The LSV curves of the RuTe2 in 0.5M H2SO4. (h) The LSV curves of the RuTe2 in 1 M KOH. (i) The electron spin 
resonance (ESR) spectra of the RuTe2, which reveals that there are a high density of defects in the a-RuTe2. Panels (a)–(i): Reproduced with permission 
from Ref. [96], © Wang, J. et al. 2019. 



 
 

Nano Research Energy 2022, 1: e9120029 

https://www.sciopen.com | https://mc03.manuscriptcentral.com/nre | Nano Research Energy 

7 

average particle size of 2.9 ±0.2 nm. Benefiting from the high 
crystallinity, uniform distribution of nanoparticles and good 
electric conductivity, the HER and OER of RuTe2 nanoparticles 
at a current density of 10 mA·cm−2 had small overpotentials of 
34 and 275 mV, respectively, exhibiting a better performance 
than RuO2. The catalyst was subjected to long-term water 
splitting electrolysis at the cell voltage of 2.00 V and current 
densities up to 100 mA cm−2, showing excellent stability over a 
period of 20 h. 

2.3 Transition metal telluride catalysts 

Transition metal OER catalysts have always been the research 
focus [98]. Transition metal elements are abundant and 
inexpensive on earth, but they are criticized for the low activity 
and poor stability [99]. Recently, transition metal OER catalysts 
have demonstrated high OER activity, even surpassing the 
benchmark catalysts RuO2 and IrO2 [100, 101]. Among them, 
transition metal dichalcogenides have attracted great attention 
due to their outstanding mechanical and chemical stability, 
high abundance in the earth’s crust, intrinsic semiconducting 
or metallic properties, and high catalytic efficiency [102–104]. 
They exhibit a layered structure that facilitates the preparation 
of 2D materials that expose more active sites. Additionally, 
they demonstrate two crystalline phases with completely different 
electronic structures (i.e., the semiconducting 2H phase and 
the metallic 1T phase) [105, 106]. The metallic 1T phase displays 
extraordinary electronic conductivity, facilitating the charge 
transfer process and possibly showing high activity in OER 
[107, 108]. Although there are few studies on transition metal 
tellurides, they have shown excellent OER activity and have 
huge development space and potential. 

Among them, Fe, Co, and Ni have been widely studied 
because they are used as active sites and exhibit high OER 
activity [109–112]. The study of Co-Te compounds is firstly 
reported among them. In 2017, Gao, Q. et al. [113] first 
synthesized hierarchical CoTe2 and CoTe nanofleeces using 
super tiny Te nanowires as templates (Fig. 4(a)). They exhibited 
excellent electrocatalytic OER activity and stability under 
alkaline conditions. CoTe2 exhibited OER activity superior to 
CoTe, which is comparable to RuO2 catalysts. In O2-saturated 
0.1 M KOH, the overpotential at a current density of 10 mA·cm−2 
was about 357 mV (Fig. 4(b)), and the Tafel slope was about 
32 mV·dec−1 (Fig. 4(c)). Majhi, K. C. et al. [114] constructed 
CoTe2@CdTe nanocomposites by a hydrothermal method, 
which exhibited an ultra-low overpotential value of 140 mV 
and a Tafel slope value of 68 mV·dec−1 at 10 mA·cm−2.     
The catalyst had good cycle stability, and no obvious change 
was observed after 500 cycles. It also exhibited high storage 
stability with almost negligible changes in the onset potential 
and current density after three months of storage. In 2020,   
Ji, L. L. et al. [115] prepared Co3[Co(CN)6]2 nanocubes by a 
precipitation method, then chemically etched them in ammonia 
solution to obtain nanoframe structure, and finally carried out 
tellurization treatment to obtain CoTe2. The overpotential of 
CoTe2 nanoframes was 291 mV in 0.5 M H2SO4, and the Tafel 
slope was 78 mV·dec−1. While in 1 M KOH, the overpotential 
was 302 mV, and the Tafel slope was 79.9 mV·dec−1. Chen,   
Z. L. et al. [116] prepared N-doped hierarchically porous carbon 
and carbon nanotube-confined CoTe2. They stimulated the 
structural transition of CoTe2 from hexagonal to orthorhombic 
phase by P doping, which enhanced the OER activity, with an 
overpotential of only 241 mV at 10 mA·cm−2 in alkaline 
electrolyte and a high operational stability for 24 h. This phase 

transition not only allowed for more catalytically active site 
exposure and faster charge transfer, but also optimized the 
adsorption energy of the intermediate species. High-performance 
Co-Te catalysts were also obtained by Fe doping. He, B. et al. 
[117] prepared nitrogen-doped carbon nanotube frameworks 
encapsulated with different amounts of Fe dopants by chemical 
vapor deposition, using ZIF-67 with high surface area and 
porosity as Co precursor. Co1.11Te2 nanoparticles exhibited 
excellent OER performance at a current density of 10 mA·cm−2 
with a minimum overpotential of 297 mV. In addition, the 
catalyst also exhibited promising HER performance. Using   
it as both the cathode and anode for overall water splitting 
could work stably for more than 20 h at a current density of  
10 mA·cm−2. 

Ni-Te compounds have received more attention due to their 
excellent OER activity. In 2017, Bhat, K. S. et al. [118] first 
fabricated layered Ni(OH)2 and chemically transformed it into 
porous hollow nickel telluride nanostructures through an anion 
exchange reaction under hydrothermal conditions. XRD showed 
that the catalyst had two phases, NiTe and NiTe2. However, its 
OER performance was poor, with an overpotential of 679 mV 
and a Tafel slope of 151 mV·dec−1. Masa, J. et al. [71] synthesized 
NiTe by a high temperature solid-state reaction with an 
overpotential of 400 mV. The activation energy at zero 
overpotential was revealed to be 100.2 kJ·mol−1 by the variable 
temperature linear sweep voltamperometry (LSV) test. Wang, Q 
et al. [119] synthesized NiTe domains on Pb0.95Ni0.05Te nanorods 
by a two-step Te self-sacrificial template solvothermal method, 
which enhanced the OER activity of NiTe. Its overpotential 
was 387 mV at 10 mA·cm−2 and the Tafel slope was low in 1 M 
KOH solution, i.e., 96 mV·dec−1, which were superior to those 
of pristine PbTe, NiTe and their powder mixtures. In 2018, De 
Silva, U. et al. [120] prepared Ni3Te2 by combining hydrothermal 
method and electrodeposition method, which exhibited 
ultra-high OER activity (Fig. 4(d)). Among them, Ni3Te2 
prepared by electrodeposition had the best activity, affording 
a high current density of 10 mA·cm−2 with an overpotential 
of only 180 mV in alkaline electrolyte. This ultra-high 
activity was related to the crystal structure. It contained three 
crystallographically unique Ni sites: two tetrahedral Ni sites 
and one pyramidal Ni site, which may make the surface Ni site 
active easier and could better cover OH groups at low potentials, 
accelerating the OER process. Chronoamperometry studies 
were performed in 1 M KOH for 24 h at an applied voltage 
of 1.44 V, and no change in the current density was observed. 
The LSV curves before and after chronoamperometry did not 
show any difference in onset potential and overpotential  
(Fig. 4(e)). This meant that Ni3Te2 was very stable, and its 
surface oxidation was also stable during the OER process, and 
there was no conversion of oxide to oxyhydroxide. Fe doping 
can also enhance the OER activity. In 2021, Sadaqat, M. et al. 
[121] synthesized Ni1−xFexTe2 nanoflakes on nickel foam by a 
facile hydrothermal method, requiring a low overpotential of 
only 190 and 274 mV to achieve 10 and 100 mA·cm−2, respectively. 
The current density could be as high as 600 mA·cm-2 at an 
overpotential of 400 mV. 

There are several studies on other transition element 
tellurides. The VTe2 of the metal 1T phase is more stable than 
other vanadium-based dichalcogenides. In addition, it exhibits 
a charge density wave behavior. A large amount of charges can 
be transferred between the p-band of Te and the d-band of V, 
making 1T-VTe2 more suitable for fast charge transfer reactions. 
Therefore, VTe2 in the 1T phase is a promising highly active 
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OER catalyst. In 2022, Pan, U. N. et al. [122] prepared Ni 
nanocluster hybridization and Mn intercalation and doped 
1T-VTe2 nanosheets, which accomplished an overpotential of 
258 mV at a current density of 40 mA·cm−2. Zhang, W. Q. et al. 
[123] systematically studied the electronic structure and 
catalytic performance of transition metal monochalcogenide 
(MX, M = Cr, Mo, W; X = S, Se, Te) nanowires based on 
first-principles calculations. The results suggested that these 
MX nanowires could be regarded as efficient bifunctional 
catalysts for OER/ORR. The overpotentials of these MX 
nanowires ranged from 200 to 590 mV, which were comparable 
to or even better than the best-known OER catalyst RuO2  
(Fig. 4(f)). In particular, the CrTe nanowires were at the top  
of the OER volcano plot with the lowest overpotential of only 
200 mV, which is 230 mV lower than that of CrTe2 (Fig. 4(g)). 
Interestingly, positively charged metal sites were generally 
considered to be the active sites for OER and ORR in many 
electrocatalysts, but the metal atoms in MX nanowires were 

located in the core of the nanowire, which hindered the 
adsorption of intermediates and reduced their catalytic activity. 
Compared with the well-known transition metal dichalcogenide 
MX2, the chalcogen atoms in MX were over-coordinated by 
four transition metal atoms, so they were more chemically 
active and could optimize the interaction with intermediates, 
serving as active sites to exhibit higher OER activity (Fig. 4(h)). 
The activities of Mo-based catalysts are far lower than those of 
the above-mentioned Co and Ni-based catalysts. But considering 
that Mo exists in the high-valence form Mo6+, it is considered 
to possess high OER efficiency [124, 125]. In 2021, He, R. Z.  
et al. [126] grew Mo on the surface of Te nanorods to form a 
Te-Mo core–shell structure, but found that its stability was 
poor and its performance decayed during the activation. In 
order to solve this problem, the authors carried out Fe doping 
and successfully obtained the OER catalyst with high activity 
and long-term stability. When this catalyst was supported on a 
glassy carbon electrode, the overpotential at 10 mA·cm−2 was 

 
Figure 4 (a) Scanning electron microscopy (SEM) images of hierarchical CoTe2 nanofleeces. (b) LSV curves of the CoTe2 and CoTe. (c) Tafel slopes of 
the CoTe2 and CoTe. (d) SEM images of Ni3Te2 composed of randomly oriented nanoflakes. (e) Stability study of the electrodeposited and hydrothermally 
synthesized Ni3Te2 through chronoamperometry at a constant potential of 1.44 and 1.45 V vs. RHE. (f) Electrochemical step diagram of CrTe, MoTe and 
WTe for OER process at zero potential. (g) The volcano plots of CrTe. (h) Possible adsorption sites for OH on double cell MX wires. Among them, blue 
balls represent metal atoms, yellow balls represent chalcogen atoms. Panels (a)–(c): reproduced with permission from Ref. [113], © Wiley-VCH Verlag 
GmbH & Co. KGaA, Weinheim 2017. Panels (d) and (e): reproduced with permission from Ref. [120], © The Royal Society of Chemistry 2018. Panels 
(f)–(h): reproduced with permission from Ref. [123], © The Royal Society of Chemistry 2020. 
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only 300 mV, which was about 140 mV lower than that without 
Fe doping. It displayed a low Tafel slope of 45.6 mV·dec−1 and 
a Faradaic efficiency close to 100%. 

Bimetals can often produce synergistic effects to promote 
the OER process, and bimetallic tellurides similarly exhibit high 
OER activity [33, 127, 128]. In 2018, He, Q. et al. [129] developed 
a simple self-template method to construct Co-Sn-X (X = S, Se, 
Te) nanocages via an anion exchange reaction of CoSn(OH)6. 
The Co-Sn-Te nanocages consisted of particles with a diameter 
of about 20 nm, with an overpotential of 343 mV and a Tafel 
slope of 91 mV·dec−1. Majhi, K. C. et al. [130] synthesized 
nanorods Zn-Co-Te by a one-pot hydrothermal method with 
an OER onset potential of 1.38 V in KOH at pH = 15.14.    
It showed a low overpotential of 221 mV and the Tafel slope is 
91 mV·dec−1 at a current density of 10 mA·cm−2. It had high 
stability after 1,000 CV cycles and storage for three months. 
Qian, G. F. et al. [131] grew CoNi hydroxide on nickel foam  
by a hydrothermal method, followed by high-temperature 
tellurization to form bimetallic telluride CoNiTe2. CoNiTe2 
exhibited higher catalytic activity than Ni, Co and CoNi.    
Its overpotential was 181 mV at 10 mA·cm−2, 230 mV at   
500 mA·cm−2, and only 270 mV at 1,000 mA·cm−2, with a low 
Tafel slope of 44 mV·dec−1. The high activity may originate 
from two parts. (1) The flower-like structures were formed via 
the stacking of CoNiTe2 nanosheets, which increased the specific 
surface area. (2) The Te element increased the covalency and 
reduced the electronegativity of the transition metal center 
anion network, thus further optimizing the electronic structure 
of the CoNi metal site and improving the catalytic activity. 

3 Summary and outlook 
In order to solve the increasingly urgent problems of energy 
shortage and environmental pollution, human beings need  
to find a new energy source to meet the needs of social 
development. Obtaining hydrogen energy from electrocatalytic 
water splitting is a very practical solution. But the OER process 
is kinetically limited. It is highly desirable to develop an efficient 
OER catalyst. Although a variety of noble metal-based and 
transition metal-based OER catalysts have been developed, 
there is still a lack of a catalyst with both high activity and 
high stability. Recently, chalcogenides become popular due to 
their ultra-high activity in OER. As an important member of 
chalcogens, Te element demonstrated the high activity and 
high stability in electrocatalytic OER, highlighting the great 
development potential. In this review, we outline its latest 
progress and further summarize it as follows. 

Te element can be introduced into OER catalysts by doping 
and other methods to further improve catalysts with good 
electrocatalytic performance, such as 2D materials, MOF 
materials, and LDH materials. Due to the large radius of Te 
anion, it shows a huge impact on the lattice, including causing 
lattice distortions, reducing the crystal size, exposing more active 
sites, and changing the electronic structure of the crystal. Its 
incorporation can also lead to various intrinsic defects in the 
catalyst to form a more stable structure, and synergize with 
these defects to optimize the adsorption of intermediate species. 
Te has less electronegativity and can form strong covalent bonds 
with transition metals in catalysts, tune the d-band center, 
enhance the conductivity of catalysts, and facilitate charge 
transfer between adsorbed species and catalysts. At the same 
time, Te possesses a variety of coordination forms, so it is of 
key importance to stabilize the catalyst. 

Compounds containing Te element show high activity in 
OER. Among them, noble metal tellurides display high OER 
activity in a wide pH range as well as good stability. Transition 
metal tellurides exhibit much lower overpotentials than oxides 
and also have good stability. The electrocatalytic performance 
of bimetallic tellurides is better, especially showing low 
overpotentials at high current densities. The main role of Te is 
to change the surface electronic properties of the catalyst, 
optimize the adsorption energy of intermediate species, and 
improve the conductivity of the catalyst. Amorphous tellurides 
demonstrate better properties than crystalline counterparts. 
The amorphous structures generate more defects. Moreover, 
the induced local distortion strain effects lead to changes in Te 
coordination, allowing the originally forbidden p–d transition 
process and therefore resulting in mid- and long-range p–π 
coupling and enhancing the electron transport process. Since 
the preparation method of Te nanowires is relatively mature, 
Te nanowires can be used as templates to prepare 1D nanowires 
and nanotubes. These structures have the characteristics of high 
specific surface area and surface coordination unsaturation, 
which greatly increases the number of active sites and further 
enhances the OER activity of tellurides. In addition, Te is also 
used as a substrate to support or grow nanomaterials. The 
interaction between Te and the supported nanomaterials can 
not only optimize the electronic structure to accelerate the 
OER process, but also help stabilize the nanomaterials by 
suppressing the peroxidation and dissolution processes. 

Although Te-contained electrocatalysts are in their infancy 
of development, they have already served critical role in highly 
efficient OER reactions. As developing materials, they also 
have many problems and challenges as below. 

First of all, the synthesis of nano-tellurides is difficult. Due 
to the small electronegativity of Te and its poor bonding ability, 
its chemical reactivity is low and it is usually difficult to form 
tellurides [132]. It is well known that air contains oxygen  
and Te is far less reactive than oxygen. When the chemical 
reactions happen in the air, they tend to obtain oxides rather 
than tellurides. Therefore, the precise control of the synthesis 
environment is required. Generally, there are several methods 
to craft nano-tellurides: (1) Solid-phase powders were sintered 
into crystals, and then the mechanical or chemical exfoliation 
was used to obtain nano-tellurides. But this method has low 
yield and is difficult to control the size [133]. (2) Nano-telluride 
thin films were grown by a chemical vapor deposition, but this 
route needs high energy consumption and achieve the poor 
uniformity of the products [134]. (3) Nano-tellurides were 
synthesized by a hydrothermal method, which can control the 
size and shape conveniently, but usually requires the participation 
of a strong reducing agent, such as hydrazine hydrate [135].  
(4) Although homogeneous nano-tellurides can be obtained 
by an organic fabrication technique, the synthesize process is 
complex [136]. Therefore, it is necessary to find a facile, 
efficient and controllable approach to craft nano-tellurides. 

Second, researches on defects are insufficient. Defects pose 
an intense influence on the properties of tellurides. For example, 
Fe as the cation doping and P as the anion doping enhance the 
activity and stability of tellurides, but there is a lack of 
comprehensive and systematic understanding of the mechanisms 
behind these defects. More experimental characterizations 
together with theoretical calculations are needed to conduct 
more in-depth studies on the chemical structure, formation 
mechanisms of defects and their effects on the catalytic activity 
and stability of catalysts. 
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Then, the mechanism by which Te enhances the OER activity 
of catalysts is not thorough, and there is a lack of researches 
on the chemical behavior of Te element during the OER 
process. In the future, in-situ characterization methods, such 
as in-situ Raman spectroscopy and in-situ XRD, should be 
used to characterize materials in the OER process and analyze 
the role of Te element. At the same time, more first-principles 
calculations should be conducted on tellurides, which are 
analyzed from the perspectives of electronic structure and 
adsorption energy.  

The mechanism by which Te enhances catalyst stability is 
lacking. Te is an element that is easily oxidized, and the change 
of the valence state of Te is also observed in the experiment. 
But there is still no reasonable explanation why this can still 
maintain the high activity of the catalyst. Considering Te has 
various oxidation states, it is necessary to study the Pourbaxi 
diagram of telluride to explore its possible stable forms at 
different potentials. 

It is worth noting that Te has toxicity and can threaten the 
human health. Therefore, it is necessary to conduct more detailed 
research on the behavior of Te element in the catalysts, 
especially the phase change of Te element during the catalytic 
process and the dissolution behavior of Te element. This 
research will also advance the understanding on the stability 
of Te-containing catalysts. 

There are few studies on electrocatalytic performance of 
Te-contained electrocatalysts at high current density. In practical 
applications, it needs to be carried out at high current density. 
Therefore, the study of catalyst behavior at high current density 
is more conducive to solving practical energy problems. 

In view of the remarkable performance of binary metal 
tellurides, the research on these materials should be increased. 
Considering the high-entropy effect of current oxide OER 
catalysts, multi-metal tellurides should be investigated, which 
may further improve the OER performance. Meanwhile, 
considering the ultra-high activity exhibited by current single- 
atom catalysts and covalent organic framework (COF) catalysts, 
it is necessary to study similar tellurium-based catalysts 
[137–140]. 
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