Skip to main content
Log in

3D magnetic field guided sunflower-like nanocatalytic active swarm targeting patients-derived organoids

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanocatalytic medicine triggering in situ catalytic reactions has been considered as a promising strategy for tumor-selective therapeutics. However, the targeted distribution of nanocatalysts was still low, considering the absence of targeting propulsion capability. Here, encouraged by the fast-developing controllable microrobotics for targeting delivery, a sunflower-like nanocatalytic active swarm (SNCAS) controlled by a three-dimensional (3D) magnetic field was proposed for synergistic tumor-selective and magnetic-actively tumor-targeting therapeutics. Furthermore, a patient-derived renal cancer cell 3D organoid was utilized for the verification of the effective tumor therapeutic outcomes. Under the targeted control of 3D magnetic field, the multiple cascade catalytic efficiency of SNCAS based on Fenton reaction was evaluated, resulting in efficient tumor cell apoptosis and death. For the patient-derived organoid treatment, the SNCAS presented significant lethality toward 3D organoid structure to induce cell apoptosis with the collapse of organoid morphology. The targeting efficiency was further enhanced under the magnetic-controllable of SNCAS. Overall, empowered by the magnetic control technology, the synergistic therapeutic strategy based on controllable swarm combined active targeting and tumor-specific catalytic nanomedicine has provided a novel way for advanced cancer therapy. Meanwhile, 3D patient-derived organoids were proved as a powerful tool for the effectiveness verification of nanocatalytic medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, H.; Chen, Y.; Shi, J. L. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 2018, 47, 1938–1958.

    Article  CAS  Google Scholar 

  2. Yang, B. W.; Chen, Y.; Shi, J. L. Nanocatalytic medicine. Adv. Mater. 2019, 31, 1901778.

    Article  Google Scholar 

  3. Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

    Article  Google Scholar 

  4. Zhang, C.; Zhao, K. L.; Bu, W. B.; Ni, D. L.; Liu, Y. Y.; Feng, J. W.; Shi, J. L. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem., Int. Ed. 2015, 54, 1770–1774.

    Article  CAS  Google Scholar 

  5. Zhang, C.; Ni, D. L.; Liu, Y. Y.; Yao, H. L.; Bu, W. B.; Shi, J. L. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol. 2017, 12, 378–386.

    Article  CAS  Google Scholar 

  6. Huang, P.; Qian, X. Q.; Chen, Y.; Yu, L. D.; Lin, H.; Wang, L. Y.; Zhu, Y. F.; Shi, J. L. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc. 2017, 139, 1275–1284.

    Article  CAS  Google Scholar 

  7. Gu, T. X.; Wang, Y.; Lu, Y. H.; Cheng, L.; Feng, L. Z.; Zhang, H.; Li, X.; Han, G. R.; Liu, Z. Platinum nanoparticles to enable electrodynamic therapy for effective cancer treatment. Adv. Mater. 2019, 31, 1806803.

    Article  Google Scholar 

  8. Ding, B. B.; Shao, S.; Yu, C.; Teng, B.; Wang, M. F.; Cheng, Z. Y.; Wong, K. L.; Ma, P. A.; Lin, J. Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Adv. Mater. 2018, 30, 1802479.

    Article  Google Scholar 

  9. Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 2019, 6, 1801733.

    Article  Google Scholar 

  10. Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

    Article  CAS  Google Scholar 

  11. Wang, B.; Kostarelos, K.; Nelson, B. J.; Zhang, L. Trends in micro-/nanorobotics: Materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 2021, 33, 2002047.

    Article  CAS  Google Scholar 

  12. Yan, X. H.; Zhou, Q.; Vincent, M.; Deng, Y.; Yu, J. F.; Xu, J. B.; Xu, T. T.; Tang, T.; Bian, L. M.; Wang, Y. X. J. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2017, 2, eaaq1155.

    Article  Google Scholar 

  13. Hu, W. Q.; Lum, G. Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85.

    Article  CAS  Google Scholar 

  14. Alapan, Y.; Bozuyuk, U.; Erkoc, P.; Karacakol, A. C.; Sitti, M. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Sci. Robot. 2020, 5, eaba5726.

    Article  Google Scholar 

  15. Yu, J. F.; Wang, B.; Du, X. Z.; Wang, Q. Q.; Zhang, L. Ultra-extensible ribbon-like magnetic microswarm. Nat. Commun. 2018, 9, 3260.

    Article  Google Scholar 

  16. Yu, J. F.; Jin, D. D.; Chan, K. F.; Wang, Q. Q.; Yuan, K.; Zhang, L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 2019, 10, 5631.

    Article  CAS  Google Scholar 

  17. Xie, H.; Sun, M. M.; Fan, X. J.; Lin, Z. H.; Chen, W. N.; Wang, L.; Dong, L. X.; He, Q. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Sci. Robot. 2019, 4, eaav8006.

    Article  Google Scholar 

  18. Jin, D. D.; Yuan, K.; Du, X. Z.; Wang, Q. Q.; Wang, S. J.; Zhang, L. Domino reaction encoded heterogeneous colloidal microswarm with on-demand morphological adaptability. Adv. Mater. 2021, 33, 2100070.

    Article  CAS  Google Scholar 

  19. Xu, H. X.; Lyu, X. D.; Yi, M.; Zhao, W. H.; Song, Y. P.; Wu, K. M. Organoid technology and applications in cancer research. J. Hematol. Oncol. 2018, 11, 116.

    Article  Google Scholar 

  20. Pampaloni, F.; Reynaud, E. G.; Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 2007, 8, 839–845.

    Article  CAS  Google Scholar 

  21. Invrea, F.; Rovito, R.; Torchiaro, E.; Petti, C.; Isella, C.; Medico, E. Patient-derived xenografts (PDXs) as model systems for human cancer. Curr. Opin. Biotechnol. 2020, 63, 151–156.

    Article  CAS  Google Scholar 

  22. Di Renzo, M. F.; Corso, S. Patient-derived cancer models. Cancers, 2020, 12, 3779.

    Article  Google Scholar 

  23. Li, M.; Belmonte, J. C. I. Organoids-Preclinical models of human disease. N. Engl. J. Med. 2019, 380, 569–579.

    Article  Google Scholar 

  24. Lee, S. H.; Hu, W. H.; Matulay, J. T.; Silva, M. V.; Owczarek, T. B.; Kim, K.; Chua, C. W.; Barlow, L. J.; Kandoth, C.; Williams, A. B. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 2018, 173, 515–528.e17.

    Article  CAS  Google Scholar 

  25. Van De Wetering, M.; Francies, H. E.; Francis, J. M.; Bounova, G.; Iorio, F.; Pronk, A.; Van Houdt, W.; Van Gorp, J.; Taylor-Weiner, A.; Kester, L. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015, 161, 933–945.

    Article  CAS  Google Scholar 

  26. Kim, M.; Mun, H.; Sung, C. O.; Cho, E. J.; Jeon, H. J.; Chun, S. M.; Jung, D. J.; Shin, T. H.; Jeong, G. S.; Kim, D. K. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 2019, 10, 3991.

    Article  Google Scholar 

  27. Tan, Q.; Choi, K. M.; Sicard, D.; Tschumperlin, D. J. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 2017, 113, 118–132.

    Article  CAS  Google Scholar 

  28. Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem., Int. Ed. 2009, 48, 5875–5879.

    Article  CAS  Google Scholar 

  29. Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 2005, 117, 2842–2845.

    Article  Google Scholar 

  30. Jana, D.; Zhao, Y. L. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022, 2, 20210238.

    Article  Google Scholar 

  31. Huang, H.; Dong, C. H.; Chang, M. Q.; Ding, L.; Chen, L.; Feng, W.; Chen, Y. Mitochondria-specific nanocatalysts for chemotherapy-augmented sequential chemoreactive tumor therapy. Exploration 2021, 1, 50–60.

    Article  Google Scholar 

  32. Liu, Y. L.; Zhao, X. J.; Yang, X. X.; Li, Y. F. A nanosized metal-organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 2013, 188, 4526–4531.

    Article  Google Scholar 

  33. Dai, Y. L.; Xu, C.; Sun, X. L.; Chen, X. Y. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 2017, 46, 3830–3852.

    Article  CAS  Google Scholar 

  34. Luo, W. J.; Zhu, C. F.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. H. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 2010, 4, 7451–7458.

    Article  CAS  Google Scholar 

  35. Dong, Y.; Wang, L.; Yuan, K.; Ji, F. T.; Gao, J. H.; Zhang, Z. F.; Du, X. Z.; Tian, Y.; Wang, Q. Q.; Zhang, L. Magnetic microswarm composed of porous nanocatalysts for targeted elimination of biofilm occlusion. ACS Nano 2021, 15, 5056–5067.

    Article  CAS  Google Scholar 

  36. Tuveson, D.; Clevers, H. Cancer modeling meets human organoid technology. Science 2019, 364, 952–955.

    Article  CAS  Google Scholar 

  37. Keller, L.; Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer 2019, 19, 553–567.

    Article  CAS  Google Scholar 

  38. Jiang, S. W.; Zhao, H. R.; Zhang, W. J.; Wang, J. Q.; Liu, Y. H.; Cao, Y. X.; Zheng, H. H.; Hu, Z. W.; Wang, S. B.; Zhu, Y. et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity. Cell Rep. Med. 2020, 1, 100161.

    Article  CAS  Google Scholar 

  39. Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920–926.

    Article  CAS  Google Scholar 

  40. Nayman, A. H.; Siginc, H.; Zemheri, E.; Yencilek, F.; Yildirim, A.; Telci, D. Dual-inhibition of mTOR and Bcl-2 enhances the antitumor effect of everolimus against renal cell carcinoma in vitro and in vivo. J. Cancer 2019, 10, 1466–1478.

    Article  CAS  Google Scholar 

  41. Zhang, Y. P.; Narayanan, S. P.; Mannan, R.; Raskind, G.; Wang, X. M.; Vats, P.; Su, F. Y.; Hosseini, N.; Cao, X. H.; Kumar-Sinha, C. et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc. Natl. Acad. Sci. USA 2021, 118, e2103240118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFA0901700), the National Natural Science Foundation of China (Nos. 21878173, 52175273, and 82072837), the 111 Project (No. B17026), and a grant from the Institute Guo Qiang, Tsinghua University (No. 2021GQG1016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Pang or Yuan Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Guo, R., Mao, S. et al. 3D magnetic field guided sunflower-like nanocatalytic active swarm targeting patients-derived organoids. Nano Res. 16, 1021–1032 (2023). https://doi.org/10.1007/s12274-022-4851-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4851-z

Keywords

Navigation