Skip to main content
Log in

Challenges and perspectives on high and intermediate-temperature sodium batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Energy storage systems are selected depending on factors such as storage capacity, available power, discharge time, self-discharge, efficiency, or durability. Additional parameters to be considered are safety, cost, feasibility, and environmental aspects. Sodium-based batteries (Na–S, NaNiCl2) typically require operation temperatures of 300–350 °C. The high operating temperatures substantially increase the operating costs and raise safety issues. This updated review describes the state-of-the-art materials for high-temperature sodium batteries and the trends towards the development and optimization of intermediate and low-temperature devices. Recent advances in inorganic solid electrolytes, glass-ceramic electrolytes, and polymer solid electrolytes are of immense importance in all-solid-state sodium batteries. Systems such as Na+ super ionic conductor (NASICON, Na1+xZr2P3–xSi x O12 (0 ≤ x ≤ 3)), glass-ceramic 94Na3PS4·6Na4SiS4, and polyethylene oxide (PEO)–sodium triflate (NaCF3SO3) are also discussed. Room temperature ionic liquids (RTILs) are also included as novel electrolyte solvents. This update discusses the progress of on-going strategies to enhance the conductivity, optimize the electrolyte/electrode interface, and improve the cell design of emerging technologies. This work aims to cover the recent advances in electrode and electrolyte materials for sodium–sulfur and sodium–metal-halide (zeolite battery research Africa project (ZEBRA)) batteries for use at high and intermediate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, Y.; Koh, J.; Xie, Q.; Wang, Y. Z.; Chang, N.; Pedram, M. A scalable and flexible hybrid energy storage system design and implementation. J. Power Sources 2014, 255, 410–422.

    Article  Google Scholar 

  2. Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.

    Article  Google Scholar 

  3. Epstein, M. Electrochemical storage of thermal energy. U.S. Patent 2014033712, Mar 6, 2014.

    Google Scholar 

  4. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  5. Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 2012, 3, 856.

    Article  Google Scholar 

  6. Menictas, C.; Skyllas-Kazacos, M.; Mariana, L. T. Advances in Batteries for Medium and Large-Scale Energy Storage; Elsevier: Oxford, UK, 2015.

    Google Scholar 

  7. Reddy, T. B. Linden’s Handbook of Batteries, 4th ed.; McGraw-Hill: New York, USA, 2011.

    Google Scholar 

  8. Geurin, S. O.; Barnes, A. K.; Balda, J. C. Smart grid applications of selected energy storage technologies. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 2012, pp 1–8.

    Google Scholar 

  9. Sparacino, A. R.; Reed, G. F.; Kerestes, R. J.; Grainger, B. M.; Smith, Z. T. Survey of battery energy storage systems and modeling techniques. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 2012, pp 1–8.

    Google Scholar 

  10. Garche, J.; Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A. J.; Scrosati, B. Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, the Netherlands, 2009.

    Google Scholar 

  11. Kummer, J. T.; Weber, N. Battery having a molten alkali metal anode and a molten sulfur cathode. U.S. Patent 3413150, Nov 26, 1968.

    Google Scholar 

  12. Abraham, K. M.; Rauh, R. D.; Brummer, S. B. A low temperature Na-S battery incorporating A soluble S cathode. Electrochim. Acta 1978, 23, 501–507.

    Article  Google Scholar 

  13. Sudworth, J. L. The Sodium Sulfur Battery; Chapman & Hall: London, UK, 1985.

    Google Scholar 

  14. Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

    Article  Google Scholar 

  15. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  Google Scholar 

  16. Jones, I. W. Recent advances in the development of sodiumsulphur batteries for load levelling and motive power applications. In International Symposium on Solid Ionic and Ionic-Electronic Conductors; Armstrong, R. D., Ed.; Elsevier: Amsterdam, the Netherlands, 1977; pp 681–688.

    Chapter  Google Scholar 

  17. Ford gives Na-S battery details. Chem. Eng. News 1966, 44, 32–33.

  18. Min, J. K.; Lee, C.-H. Numerical study on the thermal management system of a molten sodium-sulfur battery module. J. Power Sources 2012, 210, 101–109.

    Article  Google Scholar 

  19. Hueso, K. B.; Armand, M.; Rojo, T. High temperature sodium batteries: Status, challenges and future trends. Energy Environ. Sci. 2013, 6, 734–749.

    Article  Google Scholar 

  20. Hammond, G. P.; Hazeldine, T. Indicative energy technology assessment of advanced rechargeable batteries. Appl. Energy 2015, 138, 559–571.

    Article  Google Scholar 

  21. Gerssen-Gondelach, S. J.; Faaij, A. P. C. Performance of batteries for electric vehicles on short and longer term. J. Power Sources 2012, 212, 111–129.

    Article  Google Scholar 

  22. Minami, T.; Hayashi, A.; Tatsumisago, M. Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ion. 2006, 177, 2715–2720.

    Article  Google Scholar 

  23. Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 2006, 18, 2226–2229.

    Article  Google Scholar 

  24. Tanibata, N.; Matsuyama, T.; Hayashi, A.; Tatsumisago, M. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity. J. Power Sources 2015, 275, 284–287.

    Article  Google Scholar 

  25. Wei, X. L.; Cao, Y.; Lu, L.; Yang, H.; Shen, X. D. Synthesis and characterization of titanium doped sodium beta″-alumina. J. Alloys Compd. 2011, 509, 6222–6226.

    Article  Google Scholar 

  26. Tatsumisago, M.; Nagao, M.; Hayashi, A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian Ceram. Soc. 2013, 1, 17–25.

    Article  Google Scholar 

  27. Sangster, J.; Pelton, A. D. The Na-S (sodium-sulfur) system. J. Phase Equilibria 1997, 18, 89–96.

    Article  Google Scholar 

  28. Tang, T. B.; Chaudhri, M. M. Electrical degradation of β-alumina. J. Mater. Sci. 1982, 17, 157–163.

    Article  Google Scholar 

  29. Lu, X. C.; Kirby, B. W.; Xu, W.; Li, G. S.; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L.; Yang, Z. G. Advanced intermediate-temperature Na–S battery. Energy Environ. Sci. 2013, 6, 299–306.

    Article  Google Scholar 

  30. Oshima, T.; Kajita, M.; Okuno, A. Development of sodiumsulfur batteries. Int. J. Appl. Ceram. Technol. 2005, 1, 269–276.

    Article  Google Scholar 

  31. Gordon, J.; Watkins, J. Sodium–sulfur battery with a substantially non-porous membrane and enhanced cathode utilization. European Patent Application EP2409354, March 16, 2010.

    Google Scholar 

  32. Yu, X. W.; Manthiram, A. Highly reversible room-temperature sulfur/long-chain sodium polysulfide batteries. J. Phys. Chem. Lett. 2014, 5, 1943–1947.

    Article  Google Scholar 

  33. Xin, S.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 2014, 26, 1261–1265.

    Article  Google Scholar 

  34. Lu, X. C.; Li, G. S.; Kim, J. Y.; Mei, D. H.; Lemmon, J. P.; Sprenkle, V. L.; Liu, J. Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage. Nat. Commun. 2014, 5, 4578.

    Google Scholar 

  35. Crompton, T. R. Battery Reference Book, 3rd ed.; Newnes: Oxford, UK, 2000.

    Google Scholar 

  36. Park, C. W.; Ryu, H. S.; Kim, K. W.; Ahn, J. H.; Lee, J. Y.; Ahn, H. J. Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte. J. Power Sources 2007, 165, 450–454.

    Article  Google Scholar 

  37. Park, C. W.; Ahn, J. H.; Ryu, H. S.; Kim, K. W.; Ahn, H. J. Room-temperature solid-state sodium/sulfur battery. Electrochem. Solid-State Lett. 2006, 9, A123–A125.

    Article  Google Scholar 

  38. Kim, J. S.; Ahn, H. J.; Kim, I. P.; Kim, K. W.; Ahn, J. H.; Park, C. W.; Ryu, H. S. The short-term cycling properties of Na/PVdF/S battery at ambient temperature. J. Solid State Electrochem. 2008, 12, 861–865.

    Article  Google Scholar 

  39. Wang, J. L.; Yang, J.; Nuli, Y.; Holze, R. Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem. Commun. 2007, 9, 31–34.

    Article  Google Scholar 

  40. Ryu, H.; Kim, T.; Kim, K.; Ahn, J. H.; Nam, T.; Wang, G. X.; Ahn, H. J. Discharge reaction mechanism of roomtemperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. J. Power Sources 2011, 196, 5186–5190.

    Article  Google Scholar 

  41. Wei, S. Y.; Xu, S. M.; Agrawral, A.; Choudhury, S.; Lu, Y. Y.; Tu, Z. Y.; Ma, L.; Archer, L. A. A stable room-temperature sodium–sulfur battery. Nat. Commun. 2016, 7, 11722.

    Article  Google Scholar 

  42. Yu, X. W.; Manthiram, A. Performance enhancement and mechanistic studies of room-temperature sodium–sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode. Chem. Mater. 2016, 28, 896–905.

    Article  Google Scholar 

  43. Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. From lithium to sodium: Cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J. Nanotechnol. 2015, 6, 1016–1055.

    Article  Google Scholar 

  44. Steudel, R.; Steudel, Y. Polysulfide chemistry in sodiumsulfur batteries and related systems—A computational study by G3X(MP2) and PCM calculations. Chem.—Eur. J. 2013, 19, 3162–3176.

    Article  Google Scholar 

  45. Cleaver, B.; Davies, A. J. Properties of fused polysulphides—IV. Cryoscopic studies on solutions of alkali metal polysulphides in potassium thiocyanate. Electrochim. Acta 1973, 18, 741–745.

    Article  Google Scholar 

  46. Föppl, F.; Busmann, E.; Frorath, F. K. Die Kristallstrukturen von α-Na2S2 und K2S2, β-Na2S2 und Na2Se2. Z. Anorg. Allgem. Chem. 1962, 314, 12–20.

    Article  Google Scholar 

  47. Tegman, R. The crystal structure of sodium tetrasulphide, Na2S4. Acta Crystallogr. B 1973, 29, 1463–1469.

    Article  Google Scholar 

  48. Momida, H.; Yamashita, T.; Oguchi, T. First-principles study on structural and electronic properties of α-S and Na–S crystals. J. Phys. Soc. Jpn. 2014, 83, 124713.

    Article  Google Scholar 

  49. Wen, Z. Y.; Hu, Y. Y.; Wu, X. W.; Han, J. D.; Gu, Z. H. Main challenges for high performance NAS battery: Materials and interfaces. Adv. Funct. Mater. 2013, 23, 1005–1018.

    Article  Google Scholar 

  50. Min, J. K.; Stackpool, M.; Shin, C. H.; Lee, C. H. Cell safety analysis of a molten sodium–sulfur battery under failure mode from a fracture in the solid electrolyte. J. Power Sources 2015, 293, 835–845.

    Article  Google Scholar 

  51. Jung, K.; Lee, S.; Kim, G.; Kim, C. S. Stress analyses for the glass joints of contemporary sodium sulfur batteries. J. Power Sources 2014, 269, 773–782.

    Article  Google Scholar 

  52. Ha, S.; Kim, J. K.; Choi, A.; Kim, Y.; Lee, K. T. Sodiummetal halide and sodium-air batteries. ChemPhysChem 2014, 15, 1971–1982.

    Article  Google Scholar 

  53. Kluiters, E. C.; Schmal, D.; ter Veen, W. R.; Posthumus, K. J. C. M. Testing of a sodium/nickel chloride (ZEBRA) battery for electric propulsion of ships and vehicles. J. Power Sources 1999, 80, 261–264.

    Article  Google Scholar 

  54. Sudworth, J. L. Zebra batteries. J. Power Sources 1994, 51, 105–114.

    Article  Google Scholar 

  55. Van Zyl, A. Review of the zebra battery system development. Solid State Ion. 1996, 86–88, 883–889.

    Google Scholar 

  56. Dustmann, C. H. Advances in ZEBRA batteries. J. Power Sources 2004, 127, 85–92.

    Article  Google Scholar 

  57. Li, G. S.; Lu, X. C.; Coyle, C. A.; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L.; Yang, Z. G. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries. J. Power Sources 2012, 220, 193–198.

    Article  Google Scholar 

  58. Koh, W.; Lee, J.; Kim, J.; Lee, S.; Park, D.; Lee, H.; Robins, M.; Eccleston, A.; Bhavaraju, S.; Kim, J. Development of molten sodium battery using NaSICON solid electrolyte membrane for stationary and large-scale electrical energy storage system [Online]. http://ma.ecsdl.org/content/MA2014-02/9/624.abstract (accessed Jan 11, 2017).

    Google Scholar 

  59. Park, H.; Jung, K.; Nezafati, M.; Kim, C.-S.; Kang, B. Sodium ion diffusion in Nasicon (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium. Appl. Mater. Interfaces 2016, 8, 27814–27824.

    Article  Google Scholar 

  60. Munshi, M. Z. A. Handbook of Solid State Batteries & Capacitors; World Scientific Pub.: River Edge, NJ, USA, 1995.

    Book  Google Scholar 

  61. Hwang, T. H.; Jung, D. S.; Kim, J.-S.; Kim, B. G.; Choi, J. W. One-dimensional carbon–sulfur composite fibers for Na–S rechargeable batteries operating at room temperature. Nano Lett. 2013, 13, 4532–4538.

    Article  Google Scholar 

  62. Yu, X. W.; Manthiram, A. Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries. Chem.—Eur. J. 2015, 21, 4233–4237.

    Article  Google Scholar 

  63. Yu, X. W.; Manthiram, A. Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C 2014, 118, 22952–22959.

    Article  Google Scholar 

  64. Wang, Y. X.; Yang, J. P.; Lai, W. H.; Chou, S. L.; Gu, Q. F.; Liu, H. K.; Zhao, D. Y.; Dou, S. X. Achieving highperformance room-temperature sodium–sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres. J. Am. Chem. Soc. 2016, 138, 16576–16579.

    Article  Google Scholar 

  65. Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.

    Article  Google Scholar 

  66. Qiang, Z.; Chen, Y. M.; Xia, Y. F.; Liang, W. F.; Zhu, Y.; Vogt, B. D. Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N, S) nanoporous carbons. Nano Energy 2017, 32, 59–66.

    Article  Google Scholar 

  67. Chen, Y.-M.; Liang, W. F.; Li, S.; Zou, F.; Bhaway, S. M.; Qiang, Z.; Gao, M.; Vogt, B. D.; Zhu, Y. A nitrogen doped carbonized metal–organic framework for high stability room temperature sodium–sulfur batteries. J. Mater. Chem. A 2016, 4, 12471–12478.

    Article  Google Scholar 

  68. Kim, I.; Park, J.-Y.; Kim, C. H.; Park, J.-W.; Ahn, J.-P.; Ahn, J.-H.; Kim, K.-W.; Ahn, H.-J. A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J. Power Sources 2016, 301, 332–337.

    Article  Google Scholar 

  69. Yu, X. W.; Manthiram, A. Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries. ChemElectroChem 2014, 1, 1275–1280.

    Article  Google Scholar 

  70. Fan, L.; Ma, R. F.; Yang, Y. H.; Chen, S. H.; Lu, B. G. Covalent sulfur for advanced room temperature sodiumsulfur batteries. Nano Energy 2016, 28, 304–310.

    Article  Google Scholar 

  71. Zheng, S. Y.; Han, P.; Han, Z.; Li, P.; Zhang, H. J.; Yang, J. H. Nano-copper-assisted immobilization of sulfur in high-surface-area mesoporous carbon cathodes for room temperature Na-S batteries. Adv. Energy Mater. 2014, 4, 1400226.

    Article  Google Scholar 

  72. Wenzel, S.; Metelmann, H.; Raiβ, C.; Dürr, A. K.; Janek, J.; Adelhelm, P. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. J. Power Sources 2013, 243, 758–765.

    Article  Google Scholar 

  73. Li, G. S.; Lu, X. C.; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L. Cell degradation of a Na–NiCl2 (ZEBRA) battery. J. Mater. Chem. A 2013, 1, 14935–14935.

    Article  Google Scholar 

  74. Ratke, L.; Voorhees, P. W. Growth and Coarsening: Ostwald Ripening in Material Processing; Springer: Berlin, Heidelberg, 2002.

    Book  Google Scholar 

  75. Prakash, J.; Redey, L.; Vissers, D. R. Electrochemical behavior of nonporous Ni/NiCl2 electrodes in chloroaluminate melts. J. Electrochem. Soc. 2000, 147, 502–507.

    Article  Google Scholar 

  76. Javadi, T.; Petric, A. Thermodynamic analysis of reaction products observed in ZEBRA cell cathodes. J. Electrochem. Soc. 2011, 158, A700–A704.

    Article  Google Scholar 

  77. Bowden, M. E.; Alvine, K. J.; Fulton, J. L.; Lemmon, J. P.; Lu, X. C.; Webb-Robertson, B.-J.; Heald, S. M.; Balasubramanian, M.; Mortensen, D. R.; Seidler, G. T. et al. X-ray absorption measurements on nickel cathode of sodium-beta alumina batteries: Fe–Ni–Cl chemical associations. J. Power Sources 2014, 247, 517–526.

    Article  Google Scholar 

  78. Li, G. S.; Lu, X. C.; Kim, J. Y.; Engelhard, M. H.; Lemmon, J. P.; Sprenkle, V. L. The role of FeS in initial activation and performance degradation of Na–NiCl2 batteries. J. Power Sources 2014, 272, 398–403.

    Article  Google Scholar 

  79. Lu, X. C.; Li, G. S.; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L.; Yang, Z. G. A novel low-cost sodium–zinc chloride battery. Energy Environ. Sci. 2013, 6, 1837–1843.

    Article  Google Scholar 

  80. Li, G. S.; Lu, X. C.; Kim, J. Y.; Viswanathan, V. V.; Meinhardt, K. D.; Engelhard, M. H.; Sprenkle, V. L. An advanced Na-FeCl2 ZEBRA battery for stationary energy storage application. Adv. Energy Mater. 2015, 5, 1500357.

    Article  Google Scholar 

  81. Hu, Y. Y.; Wen, Z. Y.; Wu, X. W. Porous iron oxide coating on β″-alumina ceramics for Na-based batteries. Solid State Ion. 2014, 262, 133–137.

    Article  Google Scholar 

  82. Li, G. S.; Lu, X. C; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 °C. J. Power Sources 2014, 249, 414–417.

    Article  Google Scholar 

  83. Jung, K.; Heo, H.-J.; Lee, J.-H.; Park, Y.-C.; Kang, C.-Y. Enhanced corrosion resistance of hypo-eutectic Al–1Mg–xSi alloys against molten sodium attack in high temperature sodium sulfur batteries. Corros. Sci. 2015, 98, 748–757.

    Article  Google Scholar 

  84. Lee, D.-D.; Kim, J.-H.; Kim, Y.-H. The relative stability of β and β″-phases in Na2O-Al2O3 beta alumina. J. Mater. Sci. 1990, 25, 2897–2900.

    Article  Google Scholar 

  85. Zhu, C. F.; Xue, J. H.; Ji, G. H. Effect of Na2O content on properties of beta alumina solid electrolytes. Mater. Sci. Semicond. Process. 2015, 31, 487–492.

    Article  Google Scholar 

  86. Koganei, K.; Oyama, T.; Inada, M.; Enomoto, N.; Hayashi, K. C-axis oriented β″-alumina ceramics with anisotropic ionic conductivity prepared by spark plasma sintering. Solid State Ion. 2014, 267, 22–26.

    Article  Google Scholar 

  87. Kim, J. Y.; Canfield, N. L.; Bonnett, J. F.; Sprenkle, V. L.; Jung, K.; Hong, I. A duplex β″-Al2O3 solid electrolyte consisting of a thin dense layer and a porous substrate. Solid State Ion. 2015, 278, 192–197.

    Article  Google Scholar 

  88. Zhang, G. X.; Wen, Z. Y.; Wu, X. W.; Zhang, J. C.; Ma, G. Q.; Jin, J. Sol–gel synthesis of Mg2+ stabilized Na-β″/β-Al2O3 solid electrolyte for sodium anode battery. J. Alloys Compd. 2014, 613, 80–86.

    Article  Google Scholar 

  89. Yang, L.-P.; Shan, S. J.; Wei, X. L.; Liu, X. M.; Yang, H.; Shen, X. D. The mechanical and electrical properties of ZrO2–TiO2–Na-β/β″-alumina composite electrolyte synthesized via a citrate sol–gel method. Ceram. Int. 2014, 40, 9055–9060.

    Article  Google Scholar 

  90. Ahmadu, U. NASICON: Synthesis, structure and electrical characterization. In Advanced Sensor and Detection Materials; Tiwari, A.; Demir, M. M., Eds.; Scrivener Publishing: Beverly, MA, USA, 2014; pp 265–308.

    Google Scholar 

  91. Kim, J.; Jo, S. H.; Bhavaraju, S.; Eccleston, A.; Kang, S. O. Low temperature performance of sodium–nickel chloride batteries with NaSICON solid electrolyte. J. Electroanal. Chem. 2015, 759, 201–206.

    Article  Google Scholar 

  92. Noguchi, Y.; Kobayashi, E.; Plashnitsa, L. S.; Okada, S.; Yamaki, J. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim. Acta 2013, 101, 59–65.

    Article  Google Scholar 

  93. Lalère, F.; Leriche, J. B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V. An all-solid state NASICON sodium battery operating at 200 °C. J. Power Sources 2014, 247, 975–980.

    Article  Google Scholar 

  94. Roy, S.; Kumar, P. P. Influence of Cationic ordering on ion transport in NASICONs: Molecular dynamics study. Solid State Ion. 2013, 253, 217–222.

    Article  Google Scholar 

  95. Honma, T.; Okamoto, M.; Togashi, T.; Ito, N.; Shinozaki, K.; Komatsu, T. Electrical conductivity of Na2O–Nb2O5–P2O5 glass and fabrication of glass–ceramic composites with NASICON type Na3Zr2Si2PO12. Solid State Ion. 2015, 269, 19–23.

    Article  Google Scholar 

  96. Bell, N. S.; Edney, C.; Wheeler, J. S.; Ingersoll, D.; Spoerke, E. D. The influences of excess sodium on low-temperature NaSICON synthesis. J. Am. Ceram. Soc. 2014, 97, 3744–3748.

    Article  Google Scholar 

  97. Park, H.; Jung, K.; Nezafati, M.; Kim, C.-S.; Kang, B. Sodium ion diffusion in nasicon (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium. ACS Appl. Mater. Interfaces 2016, 8, 27814–27824.

    Article  Google Scholar 

  98. Tatsumisago, M.; Hayashi, A. Sulfide glass-ceramic electrolytes for all-solid-state lithium and sodium batteries. Int. J. Appl. Glass Sci. 2014, 5, 226–235.

    Article  Google Scholar 

  99. Hayashi, A.; Noi, K.; Tanibata, N.; Nagao, M.; Tatsumisago, M. High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4. J. Power Sources 2014, 258, 420–423.

    Article  Google Scholar 

  100. Noi, K.; Hayashi, A.; Tatsumisago, M. Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling. J. Power Sources 2014, 269, 260–265.

    Article  Google Scholar 

  101. Tanibata, N.; Noi, K.; Hayashi, A.; Kitamura, N.; Idemoto, Y.; Tatsumisago, M. X-ray crystal structure analysis of sodium-ion conductivity in 94 Na3PS4·6Na4SiS4 glassceramic electrolytes. ChemElectroChem 2014, 1, 1130–1132.

    Article  Google Scholar 

  102. Tanibata, N.; Noi, K.; Hayashi, A.; Tatsumisago, M. Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes. RSC Adv. 2014, 4, 17120–17123.

    Article  Google Scholar 

  103. Tanibata, N.; Hayashi, A.; Tatsumisago, M. Improvement of rate performance for all-solid-state Na15Sn4/amorphous TiS3 cells using 94Na3PS4·6Na4SiS4 glass-ceramic electrolytes. J. Electrochem. Soc. 2015, 162, A793–A795.

    Article  Google Scholar 

  104. Kandagal, V. S.; Bharadwaj, M. D.; Waghmare, U. V. Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12. J. Mater. Chem. A 2015, 3, 12992–12999.

    Article  Google Scholar 

  105. Kim, S. K.; Mao, A.; Sen, S.; Kim, S. Fast Na-ion conduction in a chalcogenide glass–ceramic in the ternary system Na2Se–Ga2Se3–GeSe2. Chem. Mater. 2014, 26, 5695–5699.

    Article  Google Scholar 

  106. Bo, S.-H.; Wang, Y.; Kim, J. C.; Richards, W. D.; Ceder, G. Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4. Chem. Mater. 2016, 28, 252–258.

    Article  Google Scholar 

  107. Song, S. F.; Wen, Z. Y.; Liu, Y. Development and characterizations of Bi2O3-containing glass–ceramic sealants for sodium sulfur battery. J. Non-Cryst. Solids 2013, 375, 25–30.

    Article  Google Scholar 

  108. Manthiram, A.; Yu, X. W. Ambient temperature sodiumsulfur batteries. Small 2015, 11, 2108–2114.

    Article  Google Scholar 

  109. Patel, M.; Chandrappa, K. G.; Bhattacharyya, A. J. Increasing ionic conductivity of polymer–sodium salt complex by addition of a non-ionic plastic crystal. Solid State Ion. 2010, 181, 844–848.

    Article  Google Scholar 

  110. Kumar, D.; Hashmi, S. A. Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ion. 2010, 181, 416–423.

    Article  Google Scholar 

  111. Isa, K. B. M.; Othman, L.; Zainol, N. H.; Samin, S. M.; Chong, W. G.; Osman, Z.; Arof, A. K. M. Studies on sodium ion conducting gel polymer electrolytes. Key Eng. Mater. 2010, 594–595, 786–792.

    Google Scholar 

  112. Long, S. Fast ion conduction in molecular plastic crystals. Solid State Ion. 2003, 161, 105–112.

    Article  Google Scholar 

  113. Alarco, P.-J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 2004, 3, 476–481.

    Article  Google Scholar 

  114. Bauer, I.; Kohl, M.; Althues, H.; Kaskel, S. Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes. Chem. Commun. 2014, 50, 3208–3210.

    Article  Google Scholar 

  115. Armand, M.; Villaluenga, I.; Rojo, T. Hybrid electrolytes provided with inorganic nanoparticles covalently grafted with organic anions. European Patent 2014012679, Jan 23, 2014.

    Google Scholar 

  116. Seh, Z. W.; Sun, J.; Sun, Y. M.; Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 2015, 1, 449–455.

    Article  Google Scholar 

  117. Han, Y. K.; Jeong, G.; Lee, K. J.; Yim, T.; Kim, Y. J. A joint experimental and theoretical determination of the structure of discharge products in Na–SO2 batteries. Phys. Chem. Chem. Phys. 2016, 18, 24841–24844.

    Article  Google Scholar 

  118. Hartmann, P.; Bender, C. L.; Vračar, M.; Dürr A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. A rechargeable roomtemperature sodium superoxide (NaO2) battery. Nat. Mater. 2012, 12, 228–232.

    Article  Google Scholar 

  119. Lu, Y.-C.; Kwabi, D. G.; Yao, K. P. C.; Harding, J. R.; Zhou, J. G.; Zuin, L.; Shao-Horn, Y. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 2011, 4, 2999–3004.

    Article  Google Scholar 

  120. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium−air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

    Article  Google Scholar 

  121. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2011, 11, 19–29.

    Article  Google Scholar 

  122. Sun, Q.; Yang, Y.; Fu, Z. W. Electrochemical properties of room temperature sodium–air batteries with non-aqueous electrolyte. Electrochem. Commun. 2012, 16, 22–25.

    Article  Google Scholar 

  123. Jeong, G.; Kim, H.; Sug, L. H.; Han, Y. K.; Hwan, P. J.; Hwan, J. J.; Song, J.; Lee, K.; Yim, T.; Jae, K. K. et al. A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte. Sci. Rep. 2015, 5, 12827.

    Article  Google Scholar 

  124. Bhavaraju, S.; Joshi, A. V.; Robins, M.; Eccleston, A. Intermediate temperature sodium-metal halide battery. U.S. Patent 20150086826, Mar 26, 2015.

    Google Scholar 

  125. Kim, J. Y.; Li, G. S.; Lu, X. C.; Sprenkle, V. L.; Lemmon, J. P.; Yang, Z. G.; Coyle, C. A. Intermediate temperature sodium metal-halide energy storage devices. U.S. Patent 2013116263, Aug 8, 2013.

    Google Scholar 

  126. Bhavaraju, S.; Robins, M. Low viscosity/high conductivity sodium haloaluminate electrolyte. U.S. Patent 20140363717, Dec 11, 2014.

    Google Scholar 

  127. Kim, Y. J.; Jeong, G. J.; Kim, H. S. Sodium-metal chloride secondary battery and method of manufacturing the same. U.S. Patent 20150099195, Apr 9, 2015.

    Google Scholar 

  128. Kim, Y. J.; Jeong, G. J.; Kim, H. S. Sodium-sulfur dioxide secondary battery and method of manufacturing the same. U.S. Patent 20150099194, Apr 9, 2015.

    Google Scholar 

  129. Kim, J. Y.; Li, G. S.; Lu, S. C.; Sprenkle, V. L.; Lemmon, J. P. Metallization pattern on solid electrolyte or porous support of sodium battery and process. U.S. Patent 2014130109, Aug 28, 2014.

    Google Scholar 

  130. Hirayama, N. Materials named “ionic liquids”—History and definition. J. Ion Exch. 2011, 22, 33–38.

    Article  Google Scholar 

  131. Vatamanu, J.; Vatamanu, M.; Bedrov, D. Non-faradaic energy storage by room temperature ionic liquids in nanoporous electrodes. ACS Nano 2015, 9, 5999–6017.

    Article  Google Scholar 

  132. Lang, C. M.; Kim, K.; Kohl, P. A. Catalytic additives for the reversible reduction of sodium in chloroaluminate ionic liquids. Electrochim. Acta 2006, 51, 3884–3889.

    Article  Google Scholar 

  133. Forsyth, M.; Yoon, H.; Chen, F. F.; Zhu, H. J.; MacFarlane, D. R.; Armand, M.; Howlett, P. C. Novel Na+ ion diffusion mechanism in mixed organic–inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells. J. Phys. Chem. C 2016, 120, 4276–4286.

    Article  Google Scholar 

  134. Yang, L. P.; Liu, X. M.; Zhang, Y. W.; Yang, H.; Shen, X. D. Advanced intermediate temperature sodium copper chloride battery. J. Power Sources 2014, 272, 987–990.

    Article  Google Scholar 

  135. Ohno, H. Electrochemical Aspects of Ionic Liquids; Wiley-Interscience: Hoboken, NJ, USA, 2005.

    Book  Google Scholar 

  136. Moreno, J. S.; Jeremias, S.; Moretti, A.; Panero, S.; Passerini, S.; Scrosati, B.; Appetecchi, G. B. Ionic liquid mixtures with tunable physicochemical properties. Electrochim. Acta 2015, 151, 599–608.

    Article  Google Scholar 

  137. Xu, W.; Cooper, E. I.; Angell, C. A. Ionic liquids: Ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 2003, 107, 6170–6178.

    Article  Google Scholar 

  138. Dokko, K.; Watanabe, M. Room-temperature ionic liquid electrolytes for alkali metal-sulfur batteries. Hyomen Kagaku 2013, 34, 309–314.

    Article  Google Scholar 

  139. Jung, K.; Lee, S.; Park, Y. C.; Kim, C. S. Finite element analysis study on the thermomechanical stability of thermal compression bonding (TCB) joints in tubular sodium sulfur cells. J. Power Sources 2014, 250, 1–14.

    Article  Google Scholar 

  140. Kumar, S.; Park, D. S. Sealing glass composition and article. U.S. Patent 9067818, Jun 30, 2015

    Google Scholar 

  141. Swift, G. Electrolyte materials, thermal battery components, and thermal batteries for intermediate temperature applications. U.S. Patent 20130078528, Mar 28, 2013.

    Google Scholar 

  142. Wachsman, E. D.; Hitz, G. T.; Lee, K. T. High conductivity Nasicon electrolyte for room temperature solid-state sodium ion batteries. U.S. Patent 2014052439, Apr 3, 2014.

    Google Scholar 

  143. Kondziella, H.; Bruckner, T. Flexibility requirements of renewable energy based electricity systems—A review of research results and methodologies. Renew. Sustain. Energy Rev. 2016, 53, 10–22.

    Article  Google Scholar 

  144. Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312.

    Article  Google Scholar 

  145. Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314.

    Article  Google Scholar 

  146. Deane, J. P.; Ó Gallachóir, B. P.; McKeogh, E. J. Technoeconomic review of existing and new pumped hydro energy storage plant. Renew. Sustain. Energy Rev. 2010, 14, 1293–1302.

    Article  Google Scholar 

  147. Divya, K. C.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520.

    Article  Google Scholar 

  148. Alotto, P.; Guarnieri, M.; Moro, F. Redox flow batteries for the storage of renewable energy: A review. Renew. Sustain. Energy Rev. 2014, 29, 325–335.

    Article  Google Scholar 

  149. Yamamoto, T.; Nohira, T.; Hagiwara, R.; Fukunaga, A.; Sakai, S.; Nitta, K.; Inazawa, S. Charge–discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl) amide–potassium bis(fluorosulfonyl)amide. J. Power Sources 2012, 217, 479–484.

    Article  Google Scholar 

  150. Massalski, T. B. Binary Alloy Phase Diagrams, 2nd ed.; ASM International: Materials Park, Ohio, USA, 1990.

    Google Scholar 

  151. Brett, D. J. L.; Aguiar, P.; Brandon, N. P.; Bull, R. N.; Galloway, R. C.; Hayes, G. W.; Lillie, K.; Mellors, C.; Smith, C.; Tilley, A. R. Concept and system design for a ZEBRA battery–intermediate temperature solid oxide fuel cell hybrid vehicle. J. Power Sources 2006, 157, 782–798.

    Article  Google Scholar 

  152. Bhavaraju, S. Hybrid molten/solid sodium anode for room/intermediate temperature electric vehicle battery. U.S. Patent 2014194231, Dec 4, 2014.

    Google Scholar 

  153. Rijssenbeek, J.; Gao, Y.; Zhong, Z.; Croft, M.; Jisrawi, N.; Ignatov, A.; Tsakalakos, T. In situ X-ray diffraction of prototype sodium metal halide cells: Time and space electrochemical profiling. J. Power Sources 2011, 196, 2332–2339.

    Article  Google Scholar 

  154. Kim, J. S.; Kim, Y. S.; Chae, J. H.; Sun, H. Y. Sodium secondary battery having predetermined gap between safety tube and solid electrolyte tube. U.S. Patent 2013129783, Sep 6, 2013.

    Google Scholar 

  155. Ecomagination [Online]. http://www.ecomagination.com/portfolio/durathon-battery (accessed Jan 11, 2017).

  156. Li, G. S.; Lu, X. C.; Kim, J. Y.; Meinhardt, K. D.; Chang, H. J.; Canfield, N. L.; Sprenkle, V. L. Advanced intermediate temperature sodium–nickel chloride batteries with ultrahigh energy density. Nat. Commun. 2016, 7, 10683.

    Article  Google Scholar 

  157. Lu, X. C.; Lemmon, J. P.; Kim, J. Y.; Sprenkle, V. L.; Yang, Z. G. High energy density Na–S/NiCl2 hybrid battery. J. Power Sources 2013, 224, 312–316.

    Article  Google Scholar 

  158. Antonucci, V.; Brunaccini, G.; De Pascale, A.; Ferraro, M.; Melino, F.; Orlandini, V.; Sergi, F. Integration of μ-SOFC generator and ZEBRA batteries for domestic application and comparison with other μ-CHP technologies. Energy Procedia 2015, 75, 999–1004.

    Article  Google Scholar 

  159. Antonucci, V.; Branchini, L.; Brunaccini, G.; De Pascale, A.; Ferraro, M.; Melino, F.; Orlandini, V.; Sergi, F. Thermal integration of a SOFC power generator and a Na–NiCl2 battery for CHP domestic application. Appl. Energy 2017, 185, 1256–1267.

    Article  Google Scholar 

  160. Boxley, C.; Coors, W. G.; Eccleston, A.; Robins, M. Low temperature molten sodium secondary cell with sodium ion conductive electrolyte membrane. U.S. Patent 2012061823, May 10, 2012.

    Google Scholar 

  161. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  Google Scholar 

  162. Wei, T.; Gong, Y. H.; Zhao, X.; Huang, K. An all-ceramic solid-state rechargeable Na+-battery operated at intermediate temperatures. Adv. Funct. Mater. 2014, 24, 5380–5384.

    Article  Google Scholar 

  163. Das, S. K.; Lau, S.; Archer, L. A. Sodium–oxygen batteries: A new class of metal–air batteries. J. Mater. Chem. A 2014, 2, 12623–12629.

    Article  Google Scholar 

  164. Liu, G.; Wang, D. D. Low temperature sulfur and sodium metal battery for grid-scale energy storage application. U.S. Patent 2014007868, Jan 9, 2014.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Basque Government (No. GV IT570-13), Ministerio de Economía y Competitividad (No. MAT2016-78266-P) and sponsored by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teófilo Rojo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hueso, K.B., Palomares, V., Armand, M. et al. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 10, 4082–4114 (2017). https://doi.org/10.1007/s12274-017-1602-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1602-7

Keywords

Navigation