RT Journal Article A1 Zerong Li,Zhiqin Deng,Ling Ouyang,Xiaoya Fan,Longcheng Zhang,Shengjun Sun,Qian Liu,Abdulmohsen Ali Alshehri,Yonglan Luo,Qingquan Kong,Xuping Sun; AD Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, 中国 ; 基础与前沿科学研究所, 中国 ; 基础与前沿科学研究所, 中国 ; 基础与前沿科学研究所, 中国 ; 基础与前沿科学研究所, 中国 ; 基础与前沿科学研究所, 中国 ; Institute for Advanced Study, 中国 ; 化学系, 沙特阿拉伯 ; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, 中国 ; Institute for Advanced Study, 中国 ; 化学化工与材料科学学院, 中国 ; 基础与前沿科学研究所, 中国 T1 CeO2 nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: A highly efficient catalyst for nitrate electroreduction to ammonia YR 2022 IS 10 vo 15 OP 8914-OP 8921 K1 electrocatalysis;oxygen vacancies;ammonia synthesis;CeO2−x nanoparticles;electrochemical NO3− reduction AB Electrocatalytic nitrate reduction reaction (NO3−RR) emerges as a highly efficient approach toward ammonia synthesis and degrading NO3− contaminant. In our study, CeO2 nanoparticles with oxygen vacancies (VO) decorated N-doped carbon nanorods on graphite paper (CeO2−x@NC/GP) were demonstrated as a highly efficient NO3−RR electrocatalyst. The CeO2−x@NC/GP catalyst manifests a significant NH3 yield up to 712.75 μmol·h−1·cm−2 at −0.8 V vs. reversible hydrogen electrode (RHE) and remarkable Faradaic efficiency of 92.93% at −0.5 V vs. RHE under alkaline conditions, with excellent durability. Additionally, an assembled Zn-NO3− battery with CeO2−x@NC/GP as cathode accomplishes a high-power density of 3.44 mW·cm−2 and a large NH3 yield of 145.08 μmol·h−1·cm−2. Density functional theory results further expose the NO3− reduction mechanism on CeO2 (111) surface with VO. SN 1998-0124 LA EN