@article{DONG2022, author = {Xiaoyan DONG and Xu LI and Hongyun CHEN and Qinpeng DONG and Jiaming WANG and Xiang WANG and Yue PAN and Xiuli CHEN and Huanfu ZHOU}, title = {Realizing enhanced energy storage and hardness performances in 0.90NaNbO3–0.10Bi(Zn0.5Sn0.5)O3 ceramics}, year = {2022}, journal = {Journal of Advanced Ceramics}, volume = {11}, number = {5}, pages = {729-741}, keywords = {energy storage, hardness, NaNbO3 (NN)-based, domain evolutions}, url = {https://www.sciopen.com/article/10.1007/s40145-022-0566-6}, doi = {10.1007/s40145-022-0566-6}, abstract = {Ceramic dielectric capacitors have a broad scope of application in pulsed power supply devices. Relaxor behavior has manifested decent energy storage capabilities in dielectric materials due to its fast polarization response. In addition, an ultrahigh energy storage density can also be achieved in NaNbO3 (NN)-based ceramics by combining antiferroelectric and relaxor characteristics. Most of the existing reports about lead-free dielectric ceramics, nevertheless, still lack the relevant research about domain evolution and relaxor behavior. Therefore, a novel lead-free solid solution, (1−x)NaNbO3–xBi(Zn0.5Sn0.5)O3 (abbreviated as xBZS, x = 0.05, 0.10, 0.15, and 0.20) was designed to analyze the domain evolution and relaxor behavior. Domain evolutions in xBZS ceramics confirmed the contribution of the relaxor behavior to their decent energy storage characteristics caused by the fast polarization rotation according to the low energy barrier of polar nanoregions (PNRs). Consequently, a high energy storage density of 3.14 J/cm3 and energy efficiency of 83.30% are simultaneously available with 0.10BZS ceramics, together with stable energy storage properties over a large temperature range (20–100 ℃) and a wide frequency range (1–200 Hz). Additionally, for practical applications, the 0.10BZS ceramics display a high discharge energy storage density (Wdis ≈ 1.05 J/cm3), fast discharge rate (t0.9 ≈ 60.60 ns), and high hardness (H ≈ 5.49 GPa). This study offers significant insights on the mechanisms of high performance lead-free ceramic energy storage materials.} }