@article{ARAÚJO2019, author = {Evando S. ARAÚJO and Victor N. S. LEÃO}, title = {TiO2/WO3 heterogeneous structures prepared by electrospinning and sintering steps: Characterization and analysis of the impedance variation to humidity}, year = {2019}, journal = {Journal of Advanced Ceramics}, volume = {8}, number = {2}, pages = {238-246}, keywords = {electrospinning, heterogeneous structures, preparation, relative humidity, semiconductors}, url = {https://www.sciopen.com/article/10.1007/s40145-018-0309-x}, doi = {10.1007/s40145-018-0309-x}, abstract = {Relative humidity (RH) is a critical environmental variable for transportation and storage of products and for the quality guarantee of several other production processes and services. Heterogeneous structures prepared from the selective semiconductor oxides may improve the sensitivity to humidity due to the better electronic and surface properties, when compared to pristine oxides. This work shows an alternative fabrication route for producing titanium dioxide/tungsten trioxide (TiO2/WO3) heterogeneous structures (by electrospinning and sintering) for potential application on the RH detection. The microstructural properties of the materials were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), X-ray diffraction, and Raman spectroscopy. The electrical characterization of the structures was performed by electrical impedance spectroscopy in RH range of 10%-100%. Results indicated a p-to n-type conduction transition at around 30%-40% RH for all tested settings. The analysis of the impedance signature to humidity showed that the amount of fiber layers on the electrode and working temperature are important parameters to improve the humidity sensing of the TiO2/WO3 systems.} }