AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Food Science Article
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Publishing Language: Chinese | Open Access

Recent Progress in Understanding the Properties of Linseed Cyclic Peptides and the Mechanism Underlying Their Bitter Taste

Qingyi ZHANG1 Ruirui GUO1Caihua JIA1 ( )Yifu ZHENG1Lin TANG1Qianchun DENG2Chen CHENG2Fenghong HUANG2Siming ZHAO1Cui’e TANG1
Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Hubei Provincial Key Laboratory of Oilseeds Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Show Author Information

Abstract

Linseed cyclic peptides are important active ingredients in flaxseed, exhibiting antioxidant, anti-inflammatory and anti-cancer properties. However, linseed cyclic peptides undergo partial oxidation during processing and storage, leading to structural changes in [1-8-NαC],[1-MetO2]-linusorb B1. As a result, the bitter compound [1-8-NαC],[1-MetO]-linusorb B1 is produced, which reduces the flavor of linseed-related products, thus limiting the use of linseed in the food industry. This article summarizes the structures and encoding genes of linseed cyclic peptides as well as the methods for their detection. Based on related research, the biological activities of cyclic peptides, the mechanism underlying their bitter taste and the debittering methods for them are described. Furthermore, this review envisages the application of linseed cyclic peptides in the pharmaceutical and food fields, and proposes that germination may be a new idea for de-bittering linseed cyclic peptides, with a view to providing a theoretical basis for the integrated regulation of the physicochemical properties and biological activities of linseed cyclic peptides.

CLC number: TS202.1 Document code: A Article ID: 1002-6630(2025)05-0319-09

References

[3]

GUI B, SHIM Y Y, REANEY M J T. Distribution of cyclolinopeptides in flaxseed fractions and products[J]. Journal of Agricultural and Food Chemistry, 2012, 60(35): 8580-8589. DOI:10.1021/jf3023832.

[4]

BRÜHL L, MATTHÄUS B, FEHLING E, et al. Identification of bitter off-taste compounds in the stored cold pressed linseed oil[J]. Journal of Agricultural and Food Chemistry, 2007, 55(19): 7864-7868. DOI:10.1021/jf071136k.

[6]

KAUFMANN H P, TOBSCHIRBEL A. Über ein oligopeptid aus leinsamen[J]. Chemische Berichte, 1959, 92(11): 2805-2809. DOI:10.1002/cber.19590921122.

[7]

MORITA H, KAYASHITA T, TAKEYA K, et al. Cyclic peptides from higher plants, part 15. Pseudostellarin H, a new cyclic octapeptide from Pseudostellaria heterophylla[J]. Journal of Natural Products. 1995, 58(6): 943-947. DOI:10.1021/np50120a021.

[8]

PICUR B, LISOWSKI M, SIEMION I Z. A new cyclolinopeptide containing nonproteinaceous amino acid N-methyl-4-aminoproline[J]. Letters in Peptide Science, 1998, 5(2): 183-187. DOI:10.1007/BF02443466.

[9]

SHIM Y Y, YOUNG L W, ARNISON P G, et al. Proposed systematic nomenclature for orbitides[J]. Journal of Natural Products, 2015, 78(4): 645-652. DOI:10.1021/np500802p.

[10]

SHIM Y Y, GUI B, ARNISON P G, et al. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: areview[J]. Trends in Food Science & Technology, 2014, 38(1): 5-20. DOI:10.1016/j.tifs.2014.03.011.

[11]

DEV D K, QUENSEL E, HANSEN R. Nitrogen extractability and buffer capacity of defatted linseed (Linum usitatissimum L.) flour[J]. Journal of the Science of Food and Agriculture, 1986, 37(2): 199-205. DOI:10.1002/jsfa.2740370215.

[14]

WANG Z W, HOBSON N, GALINDO L, et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads[J]. The Plant Journal, 2012, 72(3): 461-473. DOI:10.1111/j.1365-313X.2012.05093.x.

[15]

GUI B, SHIM Y Y, DATLA R S S, et al. Identification and quantification of cyclolinopeptides in five flaxseed cultivars[J]. Journal of Agricultural and Food Chemistry, 2012, 60(35): 8571-8579. DOI:10.1021/jf301847u.

[16]
COVELLO P S, COVELLO P S, DATLA R S S, et al. DNA sequences encoding caryophyllaceae and caryophyllaceae-like cyclopeptide precursors and methods of use: US201013319697[P]. 2010-5-10. https://www.surechembl.org/document/US-20120058905-A1.
[20]

OLIVIA C M, BURNETT P G G, OKINYO-OWITI D P, et al. Rapid reversed-phase liquid chromatography separation of cyclolinopeptides with monolithic and microparticulate columns[J]. Journal of Chromatography B, 2012, 904: 128-134. DOI:10.1016/j.jchromb.2012.07.037.

[27]
REANEY M J, JIA Y, SHEN J, et al. Recovery of hydrophobic peptides from oils: WO2009079792[P]. 2008-12-22. http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2009079792.
[28]

WIECZOREK Z, BENGTSSON B, TROJNAR J, et al. Immunosuppressive activity of cyclolinopeptide A[J]. Peptide Research, 1991, 4(5): 275-283.

[29]

GÓRSKI A, KASPRZYCKA M, NOWACZYK M, et al. Cyclolinopeptide: a novel immunosuppressive agent with potential anti-lipemic activity[J]. Transplantation Proceedings, 2001, 33(1/2): 553. DOI:10.1016/s0041-1345(00)02139-4.

[30]

GAYMES T J, CEBRAT M, SIEMION I Z, et al. Cyclolinopeptide A (CLA) mediates its immunosuppressive activity through cyclophilin-dependent calcineurin inactivation[J]. FEBS Letters, 1997, 418(1/2): 224-227. DOI:10.1016/S0014-5793(97)01345-8.

[31]

PICUR B, CEBRAT M, ZABROCKI J, et al. Cyclopeptides of Linum usitatissimum[J]. Journal of Peptide Science, 2006, 12(9): 569-574. DOI:10.1002/psc.779.

[32]

SHIM Y Y, TSE T J, SAINI A K, et al. Uptake of flaxseed dietary linusorbs modulates regulatory genes including induction of heat shock proteins and apoptosis[J]. Foods, 2022, 11(23): 3761. DOI:10.3390/foods11233761.

[33]

JADHAV P D, OKINYO-OWITI D P, AHIAHONU P W K, et al. Detection, isolation and characterisation of cyclolinopeptides J and K in ageing flax[J]. Food Chemistry, 2013, 138(2/3): 1757-1763. DOI:10.1016/j.foodchem.2012.10.126.

[34]

KANEDA T, YOSHIDA H, NAKAJIMA Y, et al. Cyclolinopeptides, cyclic peptides from flaxseed with osteoclast differentiation inhibitory activity[J]. Bioorganic & Medicinal Chemistry Letters, 2016, 26(7): 1760-1761. DOI:10.1016/j.bmcl.2016.02.040.

[35]

ROSSI F, BIANCHINI E. Synergistic induction of nitric oxide by beta-amyloid and cytokines in astrocytes[J]. Biochemical and Biophysical Research Communications, 1996, 225(2): 474-478. DOI:10.1006/bbrc.1996.1197.

[36]

KESSLER H, GEHRKE M, HAUPT A, et al. Common structural features for cytoprotection activities of somatostatin, antamanide and related peptides[J]. Klinische Wochenschrift, 1986, 64(Suppl 7): 74-78.

[38]

KEMMER H, TRIPIER D, JOUVENAL K, et al. Binding proteins for cyclic and linear oligopeptides in plasma membranes and the cytosol of rat hepatocytes[J]. Biochemical Pharmacology, 1997, 54(4): 481-490. DOI:10.1016/S0006-2952(97)00208-6.

[39]

AFONSO R, MENDES A, GALES L. Peptide-based solids: porosity and zeolitic behavior[J]. Journal of Materials Chemistry, 2012, 22(5): 1709-1723. DOI:10.1039/C1JM13568F.

[40]

CHATTERJI D, SANKARAM M B, BALASUBRAMANIAN D. Conformational and ion-binding properties of cyclolinopeptide A isolated from linseed[J]. Journal of Biosciences, 1987, 11(1): 473-484. DOI:10.1007/BF02704696.

[43]

ARAI S, SUZUKI H, FUJIMAKI M, et al. Studies on flavor components in soybean[J]. Agricultural and Biological Chemistry, 1966, 30(4): 364-369. DOI:10.1080/00021369.1966.10858609.

[44]
GUI B. Cyclolinopeptides in flaxseed and flaxseed products[D]. Saskatoon: University of Saskatchewan, 2011.
[45]

LIU X, CAI Z Z, LEE W J, et al. A practical and fast isolation of 12 cyclolinopeptides (linusorbs) from flaxseed oil via preparative HPLC with phenyl-hexyl column[J]. Food Chemistry, 2021, 351: 129318. DOI:10.1016/j.foodchem.2021.129318.

[46]

BRÜHL L, MATTHÄUS B, SCHEIPERS A, et al. Bitter off-taste in stored cold-pressed linseed oil obtained from different varieties[J]. European Journal of Lipid Science and Technology, 2008, 110(7): 625-631. DOI:10.1002/ejlt.200700314.

[47]

ALADEDUNYE F, SOSINSKA E, PRZYBYLSKI R. Flaxseed cyclolinopeptides: analysis and storage stability[J]. Journal of the American Oil Chemists’ Society, 2013, 90(3): 419-428. DOI:10.1007/s11746-012-2173-0.

[48]

ZOU X G, HU J N, ZHU X M, et al. Methionine sulfone-containing orbitides, good indicators to evaluate oxidation process of flaxseed oil[J]. Food Chemistry, 2018, 250: 204-212. DOI:10.1016/j.foodchem.2018.01.030.

[49]

NEY K H. Voraussage der bitterkeit von peptiden aus deren aminosäurezu-sammensetzung[J]. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 1971, 147(2): 64-68. DOI:10.1007/BF01879606.

[50]

ISHIBASHI N, ONO I, KATO K, et al. Role of the hydrophobic amino acid residue in the bitterness of peptides[J]. Agricultural and Biological Chemistry, 1988, 52(1): 91-94. DOI:10.1080/00021369.1988.10868631.

[51]

MATOBA T, HATA T D. Relationship between bitterness of peptides and their chemical structures[J]. Agricultural and Biological Chemistry, 1972, 36(8): 1423-1431. DOI:10.1271/bbb1961.36.1423.

[52]

KIM M R, YUKIO K, KIM K M, et al. Tastes and structures of bitter peptide, asparagine-alanine-leucine-proline-glutamate, and its synthetic analogues[J]. Journal of Agricultural and Food Chemistry, 2008, 56(14): 5852-5858. DOI:10.1021/jf7036664.

[55]

LANG T, FRANK O, LANG R, et al. Activation spectra of human bitter taste receptors stimulated with cyclolinopeptides corresponding to fresh and aged linseed oil[J]. Journal of Agricultural and Food Chemistry, 2022, 70(14): 4382-4390. DOI:10.1021/acs.jafc.2c00976.

[56]

BELL A, MCSTEEN P M, CEBRAT M, et al. Antimalarial activity of cyclolinopeptide A and its analogues[J]. Acta Poloniae Pharmaceutica, 2000, 57: 134-136.

[57]

MALKI A, FIEDLER J, FRICKE K, et al. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes[J]. Journal of Leukocyte Biology, 2015, 97(3): 533-545. DOI:10.1189/jlb.2A0714-331RR.

[63]

SHECHTER Y. Selective oxidation and reduction of methionine residues in peptides and proteins by oxygen exchange between sulfoxide and sulfide[J]. Journal of Biological Chemistry, 1986, 261(1): 66-70. DOI:10.1016/S0021-9258(17)42431-8.

[66]

WANG H, WANG J H, GUO X B, et al. Effect of germination on lignan biosynthesis, and antioxidant and antiproliferative activities in flaxseed (Linum usitatissimum L.)[J]. Food Chemistry, 2016, 205: 170-177. DOI:10.1016/j.foodchem.2016.03.001.

[68]

JOHNSTON R, MARTIN J M, VETCH J M, et al. Controlled sprouting in wheat increases quality and consumer acceptability of whole-wheat bread[J]. Cereal Chemistry, 2019, 96(5): 866-877. DOI:10.1002/cche.10187.

Food Science
Pages 319-327
Cite this article:
ZHANG Q, GUO R, JIA C, et al. Recent Progress in Understanding the Properties of Linseed Cyclic Peptides and the Mechanism Underlying Their Bitter Taste. Food Science, 2025, 46(5): 319-327. https://doi.org/10.7506/spkx1002-6630-20240724-246

94

Views

3

Downloads

0

Crossref

0

Scopus

0

CSCD

Altmetrics

Received: 24 July 2024
Published: 15 March 2025
© Beijing Academy of Food Sciences 2025.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return