AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Food Science Article
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Publishing Language: Chinese | Open Access

Research Progress on Specific Recognition and Interaction Mechanism between Antibody and Antigen in Immunoassay for Heavy Metal Residues

Junjun HUANG Mengxin ZHOUXiaodan LÜZhili XIAO ( )
Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
Show Author Information

Abstract

Heavy metals are highly toxic and can contaminate a wide range of foods. Their pollution and residues can bring about serious harm to food safety. Therefore, it is critical to strengthen efforts to detect heavy metal residues in food products. Immunoassay is promising for the rapid and efficient detection of heavy metals. Heavy metal antibodies are at the heart of immunoassays for the detection of heavy metals. Heavy metal antigens consist of two parts: heavy metal ions and chelating agents. Due to the structural similarity among metal ions and the universality of chelating agents, the resulting antibodies often show inadequate specificity, although antibodies with good specificity have been reported in some literatures. Therefore, it is significant to explore the specific recognition and interaction mechanism between heavy metal antibodies and antigens. In this article, we elaborate three research methods for understanding the recognition mechanism between heavy metal antibodies and antigens and recent progress in this area, and analyze the critical factors for the specific recognition and interaction. We hope that this review will provide a reference for enhancing the performance of heavy metal antibodies, and lay the foundation for establishing efficient, sensitive and specific methods for the detection of heavy metal residues in foods.

CLC number: TS201.6 Document code: A Article ID: 1002-6630(2025)05-0301-09

References

[2]

SCUTARAȘU E C, TRINCĂ L C. Heavy metals in foods and beverages: global situation, health risks and reduction methods[J]. Foods, 2023, 12(18): 3340. DOI:10.3390/foods12183340.

[6]

CHEN X H, ZHAO J H, ZHOU L. Knowledge protects against pollution: the health effects of the cadmium rice event in China[J]. World Development, 2024, 175: 106470. DOI:10.1016/j.worlddev.2023.106470.

[7]

VICENTE-MARTÍNEZ Y, MUÑOZ-SANDOVAL M J, HERNANDEZ-CORDOBA M, et al. Determination of Hg(Ⅱ) and methylmercury by electrothermal atomic absorption spectrometry after dispersive solid-phase microextraction with a graphene oxide magnetic material[J]. Molecules, 2022, 28(1): 14. DOI:10.3390/molecules28010014.

[8]

CHATTERJEE A, DAS R, ABRAHAM J. Bioleaching of heavy metals from spent batteries using Aspergillus nomius JAMK1[J]. International Journal of Environmental Science and Technology, 2020, 17(1): 49-66. DOI:10.1007/s13762-019-02255-0.

[9]

MANOUSI N, ZACHARIADIS G A. Development and validation of an ICP-AES method for the determination of toxic and nutrient metals in candies: application for the analysis of different samples from the Greek market[J]. Applied Sciences, 2021, 11(22): 10599. DOI:10.3390/app112210599.

[10]

LI K J, YANG H Y, YUAN X, et al. Recent developments of heavy metals detection in traditional Chinese medicine by atomic spectrometry[J]. Microchemical Journal, 2021, 160: 105726. DOI:10.1016/j.microc.2020.105726.

[12]

PANDEY S C, KUMAR A, SAHU S K. Single step green synthesis of carbon dots from Murraya koenigii leaves; a unique turn-off fluorescent contrivance for selective sensing of Cd(Ⅱ) ion[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400: 112620. DOI:10.1016/j.jphotochem.2020.112620.

[13]

HELEN R R, RAHALE C S, GIRIJA S, et al. Electrochemical detection of mercury ions using glassy carbon electrode modified with silver sulphide nanoparticles[J]. Physica Scripta, 2024, 99(10): 105401. DOI:10.1088/1402-4896/ad72ac.

[15]

XING Y M, WU X L, LIU L Q, et al. Development of a fluorescent immunoassay strip for the rapid quantitative detection of cadmium in rice[J]. Food and Agricultural Immunology, 2020, 31(1): 501-512. DOI:10.1080/09540105.2020.1741518.

[20]

XU W, XIE P, FAN L Y, et al. Synthesis and characteristics of a novel artificial hapten using the copper mercaptide of penicillenic acid from penicillin G for immunoassay of heavy metal ions[J]. Science China Life Sciences, 2011, 54(9): 813-821. DOI:10.1007/s11427-011-4220-8.

[21]

WESTHOFF C M, LOPEZ O, GOEBEL P, et al. Unusual amino acid usage in the variable regions of mercury-binding antibodies[J]. Proteins: Structure, Function, and Bioinformatics, 1999, 37(3): 429-440. DOI:10.1002/(SICI)1097-0134(19991115)37:3<429:AID-PROT10>3.0.CO;2-P.

[33]

FU X S, LI C F, JI Q G, et al. Establishment of indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) for copper ion (Cu2+) in raw meat products[J]. Journal of Food Protection, 2024, 87(5): 100262. DOI:10.1016/j.jfp.2024.100262.

[36]

FU X S, CHEN E J, MA B, et al. Establishment of an indirect competitive enzyme-linked immunosorbent method for the detection of heavy metal cadmium in food packaging materials[J]. Foods, 2021, 10(2): 413. DOI:10.3390/foods10020413.

[37]

XIAO Z L, TIAN W, XU Z L, et al. Development of a chemiluminescent enzyme immunoassay to detect cadmium in cereal samples[J]. Food and Agricultural Immunology, 2018, 29(1): 1184-1196. DOI:10.1080/09540105.2018.1527295.

[38]

XU N F, ZHU Q J, ZHU J X, et al. Novel latex microsphere immunochromatographic assay for rapid detection of cadmium ion in Asparagus[J]. Foods, 2021, 11(1): 78. DOI:10.3390/foods11010078.

[39]

SARADA N C, THAMARAISELVI K, VIJAYALAKSHMI M A. Anti Zn antibodies: cross reactivity and competitive binding with heavy metals[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2008, 861(2): 236-239. DOI:10.1016/j.jchromb.2007.08.035.

[40]

ZHU X X, HU B S, LOU Y, et al. Characterization of monoclonal antibodies for lead-chelate complexes: applications in antibody-based assays[J]. Journal of Agricultural and Food Chemistry, 2007, 55(13): 4993-4998. DOI:10.1021/jf070787d.

[41]

JONES R M, YU H N, DELEHANTY J B, et al. Monoclonal antibodies that recognize minimal differences in the three-dimensional structures of metal-chelate complexes[J]. Bioconjugate Chemistry, 2002, 13(3): 408-415. DOI:10.1021/bc0155418.

[42]

KHOSRAVIANI M, BLAKE R C, PAVLOV A R, et al. Binding properties of a monoclonal antibody directed toward lead-chelate complexes[J]. Bioconjugate Chemistry, 2000, 11(2): 267-277. DOI:10.1021/bc9901548.

[43]

BLAKE D A, CHAKRABARTI P, KHOSRAVIANI M, et al. Metal binding properties of a monoclonal antibody directed toward metal-chelate complexes[J]. Journal of Biological Chemistry, 1996, 271(44): 27677-27685. DOI:10.1074/jbc.271.44.27677.

[44]

BODEN V, COLIN C, BARBET J, et al. Preliminary study of the metal binding site of an anti-DTPA-indium antibody by equilibrium binding immunoassays and immobilized metal ion affinity chromatography[J]. Bioconjugate Chemistry, 1995, 6(4): 373-379. DOI:10.1021/bc00034a006.

[45]

DELEHANTY J B, JONES R M, BISHOP T C, et al. Identification of important residues in metal-chelate recognition by monoclonal antibodies[J]. Biochemistry, 2003, 42(48): 14173-14183. DOI:10.1021/bi034839d.

[46]

LOVE R A, VILLAFRANCA J E, AUST R M, et al. How the anti-(metal chelate) antibody CHA255 is specific for the metal ion of its antigen: X-ray structures for two Fab’/hapten complexes with different metals in the chelate[J]. Biochemistry, 1993, 32(41): 10950-10959. DOI:10.1021/bi00092a004.

[48]

BEATTY J D, BEATTY B G, VLAHOS W G. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay[J]. Journal of Immunological Methods, 1987, 100(1/2): 173-179. DOI:10.1016/0022-1759(87)90187-6.

[50]

LOOMANS E E M G, ROELEN A J M, VAN DAMME H S, et al. Assessment of the functional affinity constant of monoclonal antibodies using an improved enzyme-linked immunosorbent assay[J]. Journal of Immunological Methods, 1995, 184(2): 207-217. DOI:10.1016/0022-1759(95)00089-S.

[53]

BLAKE R C, PAVLOV A R, BLAKE D A. Automated kinetic exclusion assays to quantify protein binding interactions in homogeneous solution[J]. Analytical Biochemistry, 1999, 272(2): 123-134. DOI:10.1006/abio.1999.4176.

[54]

HARMS B D, KEARNS J D, SU S V, et al. Optimizing properties of antireceptor antibodies using kinetic computational models and experiments[J]. Methods in Enzymology, 2012, 502: 67-87. DOI:10.1016/B978-0-12-416039-2.00004-5.

[55]

DARLING R J, BRAULT P A. Kinetic exclusion assay technology: characterization of molecular interactions[J]. Assay and Drug Development Technologies, 2004, 2(6): 647-657. DOI:10.1089/adt.2004.2.647.

[60]

WU J T, LV J, ZHAO L, et al. Exploring the role of microbial proteins in controlling environmental pollutants based on molecular simulation[J]. Science of the Total Environment, 2023, 905: 167028. DOI:10.1016/j.scitotenv.2023.167028.

[61]

DÜREN T, BAE Y S, SNURR R Q. Using molecular simulation to characterise metal-organic frameworks for adsorption applications[J]. Chemical Society Reviews, 2009, 38(5): 1237-1247. DOI:10.1039/b803498m.

[64]

AKBAR S, MOZUMDER S, SENGUPTA J. Retrospect and prospect of single particle cryo-electron microscopy: the class of integral membrane proteins as an example[J]. Journal of Chemical Information and Modeling, 2020, 60(5): 2448-2457. DOI:10.1021/acs.jcim.9b01015.

[68]

STURA E A, FIESER G G, WILSON I A. Crystallization of antibodies and antibody-antigen complexes[J]. ImmunoMethods, 1993, 3(3): 164-179. DOI:10.1006/immu.1993.1051.

[69]

HE K, DU X J, SHENG W, et al. Crystal structure of the fab fragment of an anti-ofloxacin antibody and exploration of its specific binding[J]. Journal of Agricultural and Food Chemistry, 2016, 64(12): 2627-2634. DOI:10.1021/acs.jafc.5b05882.

[70]

PARK S Y, LEE W R, LEE S C, et al. Crystal structure of single-domain VL of an anti-DNA binding antibody 3D8 scFv and its active site revealed by complex structures of a small molecule and metals[J]. Proteins, 2008, 71(4): 2091-2096. DOI:10.1002/prot.22011.

[72]

BLAKE D A, PAVLOV A R, YU H N, et al. Antibodies and antibodybased assays for hexavalent uranium[J]. Analytica Chimica Acta, 2001, 444(1): 3-11. DOI:10.1016/S0003-2670(01)01151-5.

[73]

WANG Y L, ZHANG C Z, LIU F Q. Antibody developments for metal ions and their applications[J]. Food and Agricultural Immunology, 2020, 31(1): 1079-1103. DOI:10.1080/09540105.2020.1828293.

[74]

BLAKE R C, PAVLOV A R, KHOSRAVIANI M, et al. Novel monoclonal antibodies with specificity for chelated uranium(Ⅵ): isolation and binding properties[J]. Bioconjugate Chemistry, 2004, 15(5): 1125-1136. DOI:10.1021/bc049889p.

[77]

WANG Y Z, YANG H, PSCHENITZA M, et al. Highly sensitive and specific determination of mercury(Ⅱ) ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody[J]. Analytical and Bioanalytical Chemistry, 2012, 403(9): 2519-2528. DOI:10.1007/s00216-012-6052-1.

[78]

WYLIE D E, LU D, CARLSON L D, et al. Monoclonal antibodies specific for mercuric ions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(9): 4104-4108. DOI:10.1073/pnas.89.9.4104.

[79]

WANG F Y, LI N, ZHANG Y S, et al. Preparation and directed evolution of anti-ciprofloxacin ScFv for immunoassay in animal-derived food[J]. Foods, 2021, 10(8): 1933. DOI:10.3390/foods10081933.

[81]

LING S M, DONG M K, XU Y, et al. Development of sensitive and portable immunosensors based on signal amplification probes for monitoring the mercury(Ⅱ) ions[J]. Biosensors and Bioelectronics, 2022, 217: 114676. DOI:10.1016/j.bios.2022.114676.

[82]

HAN Z, PAN Y, CHEN S H, et al. Time-resolved FRET-based immunosensor for the ultrasensitive and rapid detection of Cd2+[J]. Journal of Agricultural and Food Chemistry, 2023, 71(29): 11195-11203. DOI:10.1021/acs.jafc.3c01535.

[84]

TIAN W, WANG S X, LI X M, et al. An automatic and smart platform for rapid detection of cadmium and lead simultaneously in rice using triple-amplified chemiluminescence immunoassay[J]. Food Chemistry, 2024, 437: 137900. DOI:10.1016/j.foodchem.2023.137900.

[87]

XU L, SUO X Y, ZHANG Q, et al. ELISA and chemiluminescent enzyme immunoassay for sensitive and specific determination of lead(Ⅱ) in water, food and feed samples[J]. Foods, 2020, 9(3): 305. DOI:10.3390/foods9030305.

[90]

LV S, XU X X, SONG S S, et al. An immunochromatographic assay for the rapid and qualitative detection of mercury in rice[J]. Biosensors, 2022, 12(9): 694. DOI:10.3390/bios12090694.

[91]

WANG X F, WANG Y N, WANG S Y, et al. Indirect competitive ELISA for the determination of total chromium content in food, feed and environmental samples[J]. Molecules, 2022, 27(5): 1585. DOI:10.3390/molecules27051585.

Food Science
Pages 301-309
Cite this article:
HUANG J, ZHOU M, LÜ X, et al. Research Progress on Specific Recognition and Interaction Mechanism between Antibody and Antigen in Immunoassay for Heavy Metal Residues. Food Science, 2025, 46(5): 301-309. https://doi.org/10.7506/spkx1002-6630-20240715-139

104

Views

2

Downloads

0

Crossref

0

Scopus

0

CSCD

Altmetrics

Received: 15 July 2024
Published: 15 March 2025
© Beijing Academy of Food Sciences 2025.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return