AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Food Science Article
PDF (5.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Cyanidin-3-O-glucoside Ameliorates Brain Damage by Modulating Gut Microbiota in Naturally Aging Mice

Yuyu CHEN1,2 Wenting PENG2Ge SONG2Wei FANG2Wentao QI2 ( )Yong WANG2 ( )
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
Show Author Information

Abstract

Objective: To investigate the effect of cyanidin-3-O-glucoside (C3G) on brain damage and gut microbiota in naturally aging mice. Methods: Mice aged 2 and 18 months were divided into four groups: young control, young + C3G, aging model and aged + C3G. The second and fourth groups were administered by gavage with 50 mg/kg C3G consecutively for eight weeks. The following parameters were assessed: serum levels of inflammatory factors and antioxidant indexes, expression levels of neurotrophic factors and brain damage markers in brain tissue; microbial diversity and metabolite changes in intestinal contents. Results: C3G significantly decreased the level of inflammatory factors (P < 0.05), increased the activity of antioxidant enzymes (P < 0.05), and up-regulated the expression of brain-derived neurotrophic factor (BDNF), while inhibiting the production of brain damage markers including beta amyloid 1-42 (Aβ1-42) (P < 0.05). In addition, C3G increased the relative abundance of Faecalibaculum and Bifidobacterium in the gut, while decreasing the level of Enterorhabdus. These changes in gut microbiota contributed to the production of docosahexaenoic acid and eicosapentaenoic acid and decreased linoleic acid levels (P < 0.05). Correlation analysis showed that Faecalibaculum and Bifidobacterium were negatively correlated with inflammatory factors and nerve damage indicators, but positively correlated with antioxidant capacity and neurotrophic factors. Conclusion: C3G can alleviate aging-related neurological damage and improve brain health in naturally aging mice by modulating gut microbiota. This finding may provide a theoretical basis for the development of aging-delaying health foods containing anthocyanins.

CLC number: TS201.4 Document code: A Article ID: 1002-6630(2025)05-0170-12

References

[1]

WANG B L, TANG X, MAO B Y, et al. Anti-aging effects and mechanisms of anthocyanins and their intestinal microflora metabolites[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(8): 2358-2374. DOI:10.1080/10408398.2022.2123444.

[2]

BARHA C K, HSU C L, TEN BRINKE L, et al. Biological sex: a potential moderator of physical activity efficacy on brain health[J]. Frontiers in Aging Neuroscience, 2019, 11: 329. DOI:10.3389/fnagi.2019.00329.

[3]

GHOSH T S, SHANAHAN F, O’TOOLE P W. The gut microbiome as a modulator of healthy ageing[J]. Nature Reviews. Gastroenterology & Hepatology, 2022, 19(9): 565-584. DOI:10.1038/s41575-022-00605-x.

[4]

SHAN X, LV Z Y, YIN M J, et al. The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 8880141. DOI:10.1155/2021/8880141.

[5]

LIU T T, QI W T, PENG W T, et al. Cyanidin-3-glucoside protects the photooxidative damage of retinal pigment epithelium cells by regulating sphingolipid signaling and inhibiting MAPK pathway[J]. Food Science and Human Wellness, 2024, 13(2): 621-632. DOI:10.26599/FSHW.2022.9250053.

[6]

ZHANG J L, WU J J, LIU F G, et al. Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: an outlined review[J]. European Journal of Pharmacology, 2019, 858: 172500. DOI:10.1016/j.ejphar.2019.172500.

[8]

MIN J Y, YU S W, BAEK S H, et al. Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia[J]. Neuroscience Letters, 2011, 500(3): 157-161. DOI:10.1016/j.neulet.2011.05.048.

[9]

LING Z X, LIU X, CHENG Y W, et al. Gut microbiota and aging[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(13): 3509-3534. DOI:10.1080/10408398.2020.1867054.

[10]

CHEN G W, WANG G, ZHU C J, et al. Effects of cyanidin-3-O-glucoside on 3-chloro-1, 2-propanediol induced intestinal microbiota dysbiosis in rats[J]. Food and Chemical Toxicology, 2019, 133: 110767. DOI:10.1016/j.fct.2019.110767.

[11]

CHEN L L, JIANG B W, ZHONG C G, et al. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation[J]. Carcinogenesis, 2018, 39(3): 471-481. DOI:10.1093/carcin/bgy009.

[12]

REAGAN-SHAW S, NIHAL M, AHMAD N. Dose translation from animal to human studies revisited[J]. The FASEB Journal, 2008, 22(3): 659-661. DOI:10.1096/fj.07-9574lsf.

[13]

OGUNLEYE A A. Anthocyanin on platelet function in people with dyslipidaemia[J]. EBioMedicine, 2021, 74: 103682. DOI:10.1016/j.ebiom.2021.103682.

[14]

SINGH A, SCHURMAN S H, BEKTAS A, et al. Aging and inflammation[J]. Cold Spring Harbor Perspectives in Medicine, 2024, 14(6): a041197. DOI:10.1101/cshperspect.a041197.

[15]

XI Y, LI W H, WANG J R, et al. Cyanidin-3-O-glucoside alleviates trimethyltin chloride-induced neurodegeneration by maintaining glutamate homeostasis through modulation of the gut microbiota[J]. Food Science and Human Wellness, 2024, 13(2): 1093-1107. DOI:10.26599/FSHW.2022.9250141.

[16]

WANG Y, QI W T, HUO Y Z, et al. Cyanidin-3-glucoside attenuates 4-hydroxynonenal-and visible light-induced retinal damage in vitro and in vivo[J]. Food & Function, 2019, 10(5): 2871-2880. DOI:10.1039/C9FO00273A.

[17]

HAJAM Y A, RANI R, GANIE S Y, et al. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives[J]. Cells, 2022, 11(3): 552. DOI:10.3390/cells11030552.

[18]

XU H Y, LI Q C, ZHOU W J, et al. Anti-oxidative and anti-aging effects of probiotic fermented ginseng by modulating gut microbiota and metabolites in Caenorhabditis elegans[J]. Plant Foods for Human Nutrition, 2023, 78(2): 320-328. DOI:10.1007/s11130-023-01055-9.

[19]

TAN J Q, LI P C, XUE H K, et al. Cyanidin-3-glucoside prevents hydrogen peroxide (H2O2)-induced oxidative damage in HepG2 cells[J]. Biotechnology Letters, 2020, 42(11): 2453-2466. DOI:10.1007/s10529-020-02982-2.

[20]

RAHMAN S, MATHEW S, NAIR P, et al. Health benefits of cyanidin-3-glucoside as a potent modulator of Nrf2-mediated oxidative stress[J]. Inflammopharmacology, 2021, 29(4): 907-923. DOI:10.1007/s10787-021-00799-7.

[21]

COLUCCI-D’AMATO L, SPERANZA L, VOLPICELLI F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer[J]. International Journal of Molecular Sciences, 2020, 21(20): 7777. DOI:10.3390/ijms21207777.

[22]

GAO L N, ZHANG Y, STERLING K, et al. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential[J]. Translational Neurodegeneration, 2022, 11(1): 4. DOI:10.1186/s40035-022-00279-0.

[24]

IZADI S, ABDOLREZAEI M, SOUKHAKLARI R, et al. Memory impairment induced by aluminum nanoparticles is associated with hippocampal IL-1 and IBA-1 upregulation in mice[J]. Neurological Research, 2024, 46(3): 284-290. DOI:10.1080/01616412.2023.2298137.

[25]

ZHENG X X, YANG J Y, HOU Y W, et al. Prediction of clinical progression in nervous system diseases: plasma glial fibrillary acidic protein (GFAP)[J]. European Journal of Medical Research, 2024, 29(1): 51. DOI:10.1186/s40001-023-01631-4.

[26]

ZHANG N, JING P. Red cabbage anthocyanins attenuate cognitive impairment by attenuating neuroinflammation and regulating gut microbiota in aging mice[J]. Journal of Agricultural and Food Chemistry, 2023, 71(41): 15064-15072. DOI:10.1021/acs.jafc.3c03183.

[27]

AFZAL M, REDHA A, ALHASAN R. Anthocyanins potentially contribute to defense against Alzheimer’s disease[J]. Molecules, 2019, 24(23): 4255. DOI:10.3390/molecules24234255.

[28]

BAEK H, SANJAY, PARK M, et al. Cyanidin-3-O-glucoside protects the brain and improves cognitive function in APPswe/PS1ΔE9 transgenic mice model[J]. Journal of Neuroinflammation, 2023, 20(1): 268. DOI:10.1186/s12974-023-02950-3.

[29]

BERCIK P, DENOU E, COLLINS J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice[J]. Gastroenterology, 2011, 141(2): 599-609. e3. DOI:10.1053/j.gastro.2011.04.052.

[30]

YANG X Q, YU D K, XUE L, et al. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice[J]. Acta Pharmaceutica Sinica. B, 2020, 10(3): 475-487. DOI:10.1016/j.apsb.2019.07.001.

[31]

DU Y J, GAO Y, ZENG B, et al. Effects of anti-aging interventions on intestinal microbiota[J]. Gut Microbes, 2021, 13(1): 1994835. DOI:10.1080/19490976.2021.1994835.

[32]

WANG W, ZHU G X, WANG Y W, et al. Multi-omics integration in mice with Parkinson’s disease and the intervention effect of cyanidin-3-O-glucoside[J]. Frontiers in Aging Neuroscience, 2022, 14: 877078. DOI:10.3389/fnagi.2022.877078.

[33]

ZHAO Q, HAO Y, YANG X Q, et al. Mitigation of maternal fecal microbiota transplantation on neurobehavioral deficits of offspring rats prenatally exposed to arsenic: role of microbiota-gut-brain axis[J]. Journal of Hazardous Materials, 2023, 457: 131816. DOI:10.1016/j.jhazmat.2023.131816.

[34]

LI M Q, ZHU M Z, QUAN W, et al. Acteoside palliates D-galactose induced cognitive impairment by regulating intestinal homeostasis[J]. Food Chemistry, 2023, 421: 135978. DOI:10.1016/j.foodchem.2023.135978.

[35]

CHU C Q, YU L L, LI Y W, et al. Lactobacillus plantarum CCFM405 against rotenone-induced Parkinson’s disease mice via regulating gut microbiota and branched-chain amino acids biosynthesis[J]. Nutrients, 2023, 15(7): 1737. DOI:10.3390/nu15071737.

[36]

GUO W L, MAO B Y, CUI S M, et al. Protective effects of a novel probiotic Bifidobacterium pseudolongum on the intestinal barrier of colitis mice via modulating the PPARγ/STAT3 pathway and intestinal microbiota[J]. Foods, 2022, 11(11): 1551. DOI:10.3390/foods11111551.

[37]

LI H Y, WANG Y, SHAO S M, et al. Rabdosia serra alleviates dextran sulfate sodium salt-induced colitis in mice through anti-inflammation, regulating Th17/Treg balance, maintaining intestinal barrier integrity, and modulating gut microbiota[J]. Journal of Pharmaceutical Analysis, 2022, 12(6): 824-838. DOI:10.1016/j.jpha.2022.08.001.

[38]

LIU X X, ZHANG Y H, LI W H, et al. Fucoidan ameliorated dextran sulfate sodium-induced ulcerative colitis by modulating gut microbiota and bile acid metabolism[J]. Journal of Agricultural and Food Chemistry, 2022, 70(47): 14864-14876. DOI:10.1021/acs.jafc.2c06417.

[39]

MA L Y, NI Y H, WANG Z, et al. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice[J]. Gut Microbes, 2020, 12(1): 1-19. DOI:10.1080/19490976.2020.1832857.

[40]

CHU C Q, LI T T, YU L L, et al. A low-protein, high-carbohydrate diet exerts a neuroprotective effect on mice with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease by regulating the microbiota-metabolite-brain axis and fibroblast growth factor 21[J]. Journal of Agricultural and Food Chemistry, 2023, 71(23): 8877-8893. DOI:10.1021/acs.jafc.2c07606.

[41]

WASÉN C, BEAUCHAMP L C, VINCENTINI J, et al. Bacteroidota inhibit microglia clearance of amyloid-beta and promote plaque deposition in Alzheimer’s disease mouse models[J]. Nature Communications, 2024, 15(1): 3872. DOI:10.1038/s41467-024-47683-w.

[42]

CRYAN J F, O’RIORDAN K J, COWAN C S M, et al. The microbiotagut-brain axis[J]. Physiological Reviews, 2019, 99(4): 1877-2013. DOI:10.1152/physrev.00018.2018.

[43]

CHANG J P C, SU K P, MONDELLI V, et al. High-dose eicosapentaenoic acid (EPA) improves attention and vigilance in children and adolescents with attention deficit hyperactivity disorder (ADHD) and low endogenous EPA levels[J]. Translational Psychiatry, 2019, 9(1): 303. DOI:10.1038/s41398-019-0633-0.

[44]

HABICHT I, MOHSEN G, EICHHORN L, et al. DHA supplementation attenuates MI-induced LV matrix remodeling and dysfunction in mice[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 7606938. DOI:10.1155/2020/7606938.

[45]

PENG Z L, ZHANG C, YAN L, et al. EPA is more effective than DHA to improve depression-like behavior, glia cell dysfunction and hippocampal apoptosis signaling in a chronic stress-induced rat model of depression[J]. International Journal of Molecular Sciences, 2020, 21(5): 1769. DOI:10.3390/ijms21051769.

[46]

MERCOLA J, D’ADAMO C R. Linoleic acid: a narrative review of the effects of increased intake in the standard American diet and associations with chronic disease[J]. Nutrients, 2023, 15(14): 3129. DOI:10.3390/nu15143129.

Food Science
Pages 170-181
Cite this article:
CHEN Y, PENG W, SONG G, et al. Cyanidin-3-O-glucoside Ameliorates Brain Damage by Modulating Gut Microbiota in Naturally Aging Mice. Food Science, 2025, 46(5): 170-181. https://doi.org/10.7506/spkx1002-6630-20240627-189

96

Views

3

Downloads

0

Crossref

0

Scopus

0

CSCD

Altmetrics

Received: 27 June 2024
Published: 15 March 2025
© Beijing Academy of Food Sciences 2025.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return