AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Food Science Article
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Publishing Language: Chinese | Open Access

Research Progress on the Impact and Mechanism of Energy Metabolism-Related Signaling Pathways in Postmortem Muscle on Meat Tenderness

Yufan AN1 Yanwei MAO1Xiaoyin YANG1Lixian ZHU1Jiqiang LI1Jiangang HAO2Yue GU3Haijian CHENG4Yimin ZHANG1 ( )
College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
National Beef Cattle Industrial Technology System, Ulagai Station, Ulagai 026321, China
National Beef Cattle Industrial Technology System, Baicheng Station, Baicheng 137314, China
National Beef Cattle Industrial Technology System, Jinan Station, Jinan 250000, China
Show Author Information

Abstract

Postmortem energy metabolism is a key biochemical pathway that affects meat tenderness, and glycolysis is the dominant process of postmortem energy metabolism, which is regulated by numerous factors. This article reviews the factors that affect the postmortem glycolysis process and the underlying mechanisms. AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) are important upstream regulatory factors for postmortem glycolysis. This article focuses on summarizing the effect of the AMPK/SIRT1 signaling pathway on glycolysis and postmortem endogenous enzyme systems and clarifying the underlying mechanism, in order to provide new ideas for regulating meat tenderness through the AMPK/SIRT1 signaling pathway.

CLC number: TS251.1 Document code: A Article ID: 1002-6630(2025)05-0310-09

References

[1]

ROBERGS R A, GHIASVAND F, PARKER D. Biochemistry of exercise-induced metabolic acidosis[J]. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2004, 287(3): R502-R516. DOI:10.1152/ajpregu.00114.2004.

[2]

PHD F T. Lawrie’s meat science[M]. 8th edition. Woodhead: Woodhead Publishing, 2017.

[3]

BENDALL J R. The shortening of rabbit muscles during rigor mortis: its relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction[J]. The Journal of Physiology, 1951, 114(1/2): 71-88. DOI:10.1113/jphysiol.1951.sp004604.

[4]

PEARSON A M, YOUNG R B. Muscle and meat biochemistry[M]. San Diego: Academic Press, 1989.

[5]

JACOB R H, HOPKINS D L. Techniques to reduce the temperature of beef muscle early in the post mortem period: a review[J]. Animal Production Science, 2014, 54(4): 482. DOI:10.1071/an12338.

[6]

MA J B, CHEN C, YU Q L, et al. AMP-activated protein kinase contributes to myofibrillar protein hydrolysis in bovine skeletal muscle through postmortem mitochondrial dysfunction-induced apoptosis[J]. Journal of Food Biochemistry, 2022, 46(1): e14028. DOI:10.1111/jfbc.14028.

[7]

SCHEFFLER T L, PARK S, GERRARD D E. Lessons to learn about postmortem metabolism using the AMPKγ3(R200Q) mutation in the pig[J]. Meat Science, 2011, 89(3): 244-250. DOI:10.1016/j.meatsci.2011.04.030.

[8]

IMAI S, ARMSTRONG C M, KAEBERLEIN M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase[J]. Nature, 2000, 403(6771): 795-800. DOI:10.1038/35001622.

[10]

KJØBSTED R, HINGST J R, FENTZ J, et al. AMPK in skeletal muscle function and metabolism[J]. The FASEB Journal, 2018, 32(4): 1741-1777. DOI:10.1096/fj.201700442R.

[11]

WANG C C, MATARNEH S K, GERRARD D, et al. Contributions of energy pathways to ATP production and pH variations in postmortem muscles[J]. Meat Science, 2022, 189: 108828. DOI:10.1016/j.meatsci.2022.108828.

[12]

DUAN B B, XU J W, XING T, et al. Creatine nitrate supplementation strengthens energy status and delays glycolysis of broiler muscle via inhibition of LKB1/AMPK pathway[J]. Poultry Science, 2022, 101(3): 101653. DOI:10.1016/j.psj.2021.101653.

[13]

KURTH-KRACZEK E J, HIRSHMAN M F, GOODYEAR L J, et al. 5'AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle[J]. Diabetes, 1999, 48(8): 1667-1671. DOI:10.2337/diabetes.48.8.1667.

[14]

SHEN Q W, MEANS W J, UNDERWOOD K R, et al. Early postmortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and-1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle[J]. Journal of Agricultural and Food Chemistry, 2006, 54(15): 5583-5589. DOI:10.1021/jf060411k.

[16]

LAN R X, WEI L L, WANG Y C, et al. AMP-activated protein kinase mediates glycolysis in post-mortem breast muscle of broilers[J]. Italian Journal of Animal Science, 2022, 21(1): 1067-1073. DOI:10.1080/1828051x.2022.2093138.

[18]

YANG Y Y, YANG J Y, YU Q L, et al. Regulation of yak longissimus lumborum energy metabolism and tenderness by the AMPK/SIRT1 signaling pathways during postmortem storage[J]. PLoS ONE, 2022, 17(11): e0277410. DOI:10.1371/journal.pone.0277410.

[19]

SHEN Q W, DU M. Role of AMP-activated protein kinase in the glycolysis of postmortem muscle[J]. Journal of the Science of Food and Agriculture, 2005, 85(14): 2401-2406. DOI:10.1002/jsfa.2252.

[20]

HUANG F, DING Z J, CHEN J S, et al. Contribution of mitochondria to postmortem muscle tenderization: a review[J]. Critical Reviews in Food Science and Nutrition, 2023: 1-17. DOI:10.1080/10408398.2023.2266767.

[21]

ENGLAND E M, MATARNEH S K, MITACEK R M, et al. Presence of oxygen and mitochondria in skeletal muscle early postmortem[J]. Meat Science, 2018, 139: 97-106. DOI:10.1016/j.meatsci.2017.12.008.

[22]

MATARNEH S K, YEN C N, BODMER J, et al. Mitochondria influence glycolytic and tricarboxylic acid cycle metabolism under postmortem simulating conditions[J]. Meat Science, 2021, 172: 108316. DOI:10.1016/j.meatsci.2020.108316.

[23]

ZOU B, JIA F, JI L, et al. Effects of mitochondria on postmortem meat quality: characteristic, isolation, energy metabolism, apoptosis and oxygen consumption[J]. Critical Reviews in Food Science and Nutrition, 2024, 64: 11239-11262. DOI:10.1080/10408398.2023.2235435.

[24]
ENGLAND E M, MATARNEH S K, SCHEFFLER T L, et al. Perimortal muscle metabolism and its effects on meat quality[M]//PURSLOW P P. New aspects of meat quality. Amsterdam: Elsevier, 2017: 63-89. DOI:10.1016/b978-0-08-100593-4.00004-7.
[25]

HALLING J F, PILEGAARD H. PGC-1α-mediated regulation of mitochondrial function and physiological implications[J]. Applied Physiology, Nutrition, and Metabolism, 2020, 45(9): 927-936. DOI:10.1139/apnm-2020-0005.

[26]

RAKSHE P S, DUTTA B J, CHIB S, et al. Unveiling the interplay of AMPK/SIRT1/PGC-1α axis in brain health: promising targets against aging and NDDs[J]. Ageing Research Reviews, 2024, 96: 102255. DOI:10.1016/j.arr.2024.102255.

[27]

SIDDHI J, SHERKHANE B, KALAVALA A K, et al. Melatonin prevents diabetes-induced nephropathy by modulating the AMPK/SIRT1 axis: focus on autophagy and mitochondrial dysfunction[J]. Cell Biology International, 2022, 46(12): 2142-2157. DOI:10.1002/cbin.11899.

[28]

TIAN L, CAO W J, YUE R J, et al. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway[J]. Journal of Pharmacological Sciences, 2019, 139(4): 352-360. DOI:10.1016/j.jphs.2019.02.008.

[29]

ZHAO A R, LI J, WANG S Q, et al. Stress can affect mitochondrial energy metabolism and AMPK/SIRT1 signaling pathway in rats[J]. Brain Research Bulletin, 2023, 203: 110770. DOI:10.1016/j.brainresbull.2023.110770.

[30]

ZHU X J, YANG C, WANG L L, et al. Feedback regulation between AMPK and HIF-1α contributes to color stability via energy metabolism and mitochondrial efficiency regulation of yak meat[J]. LWT-Food Science and Technology, 2024, 199: 116031. DOI:10.1016/j.lwt.2024.116031.

[31]

JI C, LIU J J, LUO R M. Regulatory role of mitochondrial genes in the tenderisation of lamb meat during postmortem ageing[J]. International Journal of Food Science & Technology, 2022, 57(6): 3544-3555. DOI:10.1111/ijfs.15678.

[32]

LIAO H J, ZHANG L, LI J L, et al. Intracellular calcium overload and activation of CaMKK/AMPK signaling are related to the acceleration of muscle glycolysis of broiler chickens subjected to acute stress[J]. Journal of Agricultural and Food Chemistry, 2023, 71(9): 4091-4100. DOI:10.1021/acs.jafc.2c07391.

[33]

DE RIDDER I, KERKHOFS M, LEMOS F O, et al. The ER-mitochondria interface, where Ca2+ and cell death meet[J]. Cell Calcium, 2023, 112: 102743. DOI:10.1016/j.ceca.2023.102743.

[35]

WALKON L L, STRUBBE-RIVERA J O, BAZIL J N. Calcium overload and mitochondrial metabolism[J]. Biomolecules, 2022, 12(12): 1891. DOI:10.3390/biom12121891.

[36]

HUDSON N J. Mitochondrial treason: a driver of pH decline rate in post-mortem muscle?[J]. Animal Production Science, 2012, 52(12): 1107. DOI:10.1071/an12171.

[37]

WANG S Y, TAN J, MIAO Y Y, et al. Mitochondrial dynamics, mitophagy, and mitochondria-endoplasmic reticulum contact sites crosstalk under hypoxia[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 848214. DOI:10.3389/fcell.2022.848214.

[38]

ENGLAND E M, SCHEFFLER T L, KASTEN S C, et al. Exploring the unknowns involved in the transformation of muscle to meat[J]. Meat Science, 2013, 95(4): 837-843. DOI:10.1016/j.meatsci.2013.04.031.

[39]

MA J B, YU Q L, HAN L. The effect of postmortem pH decline rate on caspase-3 activation and tenderness of bovine skeletal muscle during aging[J]. Journal of Food Biochemistry, 2022, 46(9): e14215. DOI:10.1111/jfbc.14215.

[40]

HU Y, TIAN C S, CHEN F, et al. The mystery of methylmercuryperturbed calcium homeostasis: ampk-DRP1-dependent mitochondrial fission initiates ER-mitochondria contact formation[J]. Science of the Total Environment, 2024, 923: 171398. DOI:10.1016/j.scitotenv.2024.171398.

[41]

LV Y H, CHENG L, PENG F L. Compositions and functions of mitochondria-associated endoplasmic reticulum membranes and their contribution to cardioprotection by exercise preconditioning[J]. Frontiers in Physiology, 2022, 13: 910452. DOI:10.3389/fphys.2022.910452.

[42]

DAVEY C L, GILBERT K V. Studies in meat tenderness. 7. Changes in the fine structure of meat during aging[J]. Journal of Food Science, 1969, 34(1): 69-74. DOI:10.1111/j.1365-2621.1969.tb14364.x.

[43]
ERTBJERG P. Current understanding on the role of proteolysis on meat quality[M]// PURSLOW P P. New aspects of meat quality. Amsterdam: Elsevier, 2022: 95-114. DOI:10.1016/b978-0-323-85879-3.00022-2.
[44]

VILLANUEVA-PAZ M, COTÁN D, GARRIDO-MARAVER J, et al. AMPK regulation of cell growth, apoptosis, autophagy, and bioenergetics[J]. Experientia Supplementum, 2016, 107: 45-71. DOI:10.1007/978-3-319-43589-3_3.

[46]

ONO Y, OJIMA K, SHINKAI-OUCHI F, et al. An eccentric calpain, CAPN3/p94/calpain-3[J]. Biochimie, 2016, 122: 169-187. DOI:10.1016/j.biochi.2015.09.010.

[47]

GOLL D E, THOMPSON V F, LI H, et al. The calpain system[J]. Physiological Reviews, 2003, DOI:10.1152/physrev.00029.2002.

[48]

FRANCO S J, RODGERS M A, PERRIN B J, et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics[J]. Nature Cell Biology, 2004, 6(10): 977-983. DOI:10.1038/ncb1175.

[49]

KOOHMARAIE M. Effect of pH, temperature, and inhibitors on autolysis and catalytic activity of bovine skeletal muscle mu-calpain[J]. Journal of Animal Science, 1992, 70(10): 3071-3080. DOI:10.2527/1992.70103071x.

[50]

HWANG I H, THOMPSON J M. The interaction between pH and temperature decline early postmortem on the calpain system and objective tenderness in electrically stimulated beef longissimus dorsi muscle[J]. Meat Science, 2001, 58(2): 167-174. DOI:10.1016/S0309-1740(00)00147-9.

[51]

RAMOS P M, WRIGHT S A, DELGADO E F, et al. Resistance to pH decline and slower calpain-1 autolysis are associated with higher energy availability early postmortem in Bos taurus Indicus cattle[J]. Meat Science, 2020, 159: 107925. DOI:10.1016/j.meatsci.2019.107925.

[52]

THIBAUDEAU T A, SMITH D M. A practical review of proteasome pharmacology[J]. Pharmacological Reviews, 2019, 71(2): 170-197. DOI:10.1124/pr.117.015370.

[53]

SUN M F, JIAO H C, ZHAO J P, et al. Research note: creatine monohydrate alleviates protein breakdown induced by corticosterone via inhibiting ubiquitin proteasome pathway in chicken myotubes[J]. Poultry Science, 2022, 101(12): 102177. DOI:10.1016/j.psj.2022.102177.

[54]

KISSELEV A F, GOLDBERG A L. Proteasome inhibitors: from research tools to drug candidates[J]. Chemistry & Biology, 2001, 8(8): 739-758. DOI:10.1016/S1074-5521(01)00056-4.

[56]

GREER E L, OSKOUI P R, BANKO M R, et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor[J]. Journal of Biological Chemistry, 2007, 282(41): 30107-30119. DOI:10.1074/jbc.M705325200.

[57]

KAMEI Y, MIURA S, SUZUKI M, et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control*[boxes][J]. Journal of Biological Chemistry, 2004, 279(39): 41114-41123. DOI:10.1074/jbc.M400674200.

[59]

SEKIKAWA M, YAMAMOTO M, FUKUSHIMA M, et al. Effect of proteasome inhibitor on sarcoplasmic protein of bovine skeletal muscle during storage[J]. Food Chemistry, 2001, 73(1): 17-21. DOI:10.1016/S0308-8146(00)00272-7.

[60]

MARIÑO G, NISO-SANTANO M, BAEHRECKE E H, et al. Self-consumption: the interplay of autophagy and apoptosis[J]. Nature Reviews. Molecular Cell Biology, 2014, 15(2): 81-94. DOI:10.1038/nrm3735.

[62]

LIU C M, DING Z J, ZHANG Z H, et al. Morphological changes of mitochondria-related to apoptosis during postmortem aging of beef muscles[J]. Food Chemistry: X, 2023, 19: 100806. DOI:10.1016/j.fochx.2023.100806.

[63]

SICA V, GALLUZZI L, BRAVO-SAN PEDRO J M, et al. Organelle-specific initiation of autophagy[J]. Molecular Cell, 2015, 59(4): 522-539. DOI:10.1016/j.molcel.2015.07.021.

[64]

LI C M, YIN X L, XUE P P, et al. Apoptosis and autophagy of muscle cell during pork postmortem aging[J]. Animal Bioscience, 2024, 37(2): 284-294. DOI:10.5713/ab.23.0148.

[65]

YAN Y X, CHEN X X, HUANG J P, et al. H2O2-induced oxidative stress impairs meat quality by inducing apoptosis and autophagy via ROS/NF-κB signaling pathway in broiler thigh muscle[J]. Poultry Science, 2022, 101(4): 101759. DOI:10.1016/j.psj.2022.101759.

[66]

WANG T T, FENG X C, LI L Z, et al. Effects of quercetin on tenderness, apoptotic and autophagy signalling in chickens during post-mortem ageing[J]. Food Chemistry, 2022, 383: 132409. DOI:10.1016/j.foodchem.2022.132409.

[67]

GARCÍA-MACIA M, SIERRA V, PALANCA A, et al. Autophagy during beef aging[J]. Autophagy, 2014, 10(1): 137-143. DOI:10.4161/auto.26659.

[68]

YUAN J M, DONG X D, YAP J, et al. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy[J]. Journal of Hematology & Oncology, 2020, 13(1): 113. DOI:10.1186/s13045-020-00949-4.

[69]

SHE C, ZHU L Q, ZHEN Y F, et al. Activation of AMPK protects against hydrogen peroxide-induced osteoblast apoptosis through autophagy induction and NADPH maintenance: new implications for osteonecrosis treatment?[J]. Cellular Signalling, 2014, 26(1): 1-8. DOI:10.1016/j.cellsig.2013.08.046.

[70]

EGAN D F, SHACKELFORD D B, MIHAYLOVA M M, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy[J]. Science, 2011, 331(6016): 456-461. DOI:10.1126/science.1196371.

[71]

TIAN W L, LI W, CHEN Y Q, et al. Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy[J]. FEBS Letters, 2015, 589(15): 1847-1854. DOI:10.1016/j.febslet.2015.05.020.

[72]

WHITE J P, BILLIN A N, CAMPBELL M E, et al. The AMPK/p27Kip1 axis regulates autophagy/apoptosis decisions in aged skeletal muscle stem cells[J]. Stem Cell Reports, 2018, 11(2): 425-439. DOI:10.1016/j.stemcr.2018.06.014.

[73]

MCKAY L K, WHITE J P. The AMPK/p27Kip1 pathway as a novel target to promote autophagy and resilience in aged cells[J]. Cells, 2021, 10(6): 1430. DOI:10.3390/cells10061430.

[74]

GAO Y F, ZHANG J Y, HE L, et al. Associations among adenosine monophosphate-activated protein kinase, glycolysis, muscle characteristics, and apoptosis in postmortem bovines longissimus muscle[J]. European Food Research and Technology, 2020, 246(5): 971-985. DOI:10.1007/s00217-020-03458-3.

[76]

ZHAI C Y, DJIMSA B A, PRENNI J E, et al. Tandem mass tag labeling to characterize muscle-specific proteome changes in beef during early postmortem period[J]. Journal of Proteomics, 2020, 222: 103794. DOI:10.1016/j.jprot.2020.103794.

[77]

ZHU X J, LI A X, SUN N, et al. Green tea catechin prevents oxidative stress-regulated autophagy and apoptosis signaling, and inhibits tenderness in postmortem bovine longissimus thoracis et lumborum muscle[J]. Food Chemistry: X, 2023, 19: 100758. DOI:10.1016/j.fochx.2023.100758.

Food Science
Pages 310-318
Cite this article:
AN Y, MAO Y, YANG X, et al. Research Progress on the Impact and Mechanism of Energy Metabolism-Related Signaling Pathways in Postmortem Muscle on Meat Tenderness. Food Science, 2025, 46(5): 310-318. https://doi.org/10.7506/spkx1002-6630-20240423-208

100

Views

3

Downloads

0

Crossref

0

Scopus

0

CSCD

Altmetrics

Received: 04 July 2024
Published: 15 March 2025
© Beijing Academy of Food Sciences 2025.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return