AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (22.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

DNA-binding proteins studied by mechanical manipulation and AFM imaging of single DNA molecules

Xiaodan Zhao1,3Xuyao Priscilla Liu1,3Jie Yan1,2,3( )
Department of Physics, National University of Singapore, Singapore 117542, Singapore
Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
Centre for Bioimaging Sciences, National University of Singapore, Singapore 117546, Singapore
Show Author Information

Graphical Abstract

Abstract

The functions of DNA-binding proteins are dependent on protein-induced DNA distortion, the binding preference to special sequences, DNA secondary structures, the binding kinetics and the binding affinity. Recent rapid progress in single-molecule imaging and mechanical manipulation technologies have made it possible to directly probe the DNA binding by proteins, footprint the positions of the bound proteins on DNA, quantify the kinetics and the affinity of protein–DNA interactions, and study the interplay of protein binding with DNA conformation and DNA topology. Here, we review the applications of an integrated approach where the single-DNA imaging using atomic force microscopy and the mechanical manipulation of single DNA molecules are combined to study the DNA–protein interactions. We also provide our views on how these findings yield new insights into understanding the roles of several essential DNA architectural proteins.

References

 

Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181(20): 6361−6370

 

Amit R, Oppenheim AB, Stavans J (2003) Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys J 84(4): 2467−2473

 

Arold ST, Leonard PG, Parkinson GN, Ladbury JE (2010) H-NS forms a superhelical protein scaffold for DNA condensation. Proc Natl Acad Sci USA 107(36): 15728−15732

 

Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3): 381−395

 

Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, Koster AJ, Woodcock CL (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci USA 95(24): 14173−14178

 

Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW, 3rd, Bulyk ML (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24(11): 1429−1435

 

Bianchi ME, Agresti A (2005) HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 15(5): 496−506

 

Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9): 930−933

 

Blank TA, Becker PB (1996) The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J Mol Biol 260(1): 1−8

 

Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S (2007) H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 14(5): 441−448

 

Brent Brower-Toland MDW (2004) Use of optical trapping techniques to study single-nucleosome dynamics. Methods Enzymol 376: 62−72

 

Browning DF, Grainger DC, Busby SJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13(6): 773−780

 

Bustin M (1999) Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol 19(8): 5237−5246

 

Ceci P, Cellai S, Falvo E, Rivetti C, Rossi GL, Chiancone E (2004) DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Nucleic Acids Res 32(19): 5935−5944

 

Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56(4): 858−870

 

Dame RT, Wyman C, Goosen N (2000) H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res 28(18): 3504−3510

 
Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319(5): 1097-1113
 

Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8(3): 185−195

 

Dufrene YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Muller DJ (2017) Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol 12(4): 295−307

 

Fagerstam LG, Frostell-Karlsson A, Karlsson R, Persson B, Ronnberg I (1992) Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J Chromatogr 597(1-2): 397−410

 

Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9(23): 6505−6525

 

Fu H, Freedman BS, Lim CT, Heald R, Yan J (2011) Atomic force microscope imaging of chromatin assembled in Xenopus laevis egg extract. Chromosoma 120(3): 245−254

 

Galas DJ, Schmitz A (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5(9): 3157−3170

 

Gao Y, Foo YH, Winardhi RS, Tang Q, Yan J, Kenney LJ (2017) Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells. Proc Natl Acad Sci USA 114(47): 12560−12565

 

Gerber C, Lang HP (2006) How the doors to the nanoworld were opened. Nat Nanotechnol 1(1): 3−5

 

Germond JE, Hirt B, Oudet P, Gross-Bellark M, Chambon P (1975) Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci USA 72(5): 1843−1847

 

Goodman FO, Garcia N (1991) Roles of the attractive and repulsive forces in atomic-force microscopy. Phys Rev B Condens Matter 43(6): 4728−4731

 

Goosen N, van de Putte P (1995) The regulation of transcription initiation by integration host factor. Mol Microbiol 16(1): 1−7

 

Gulvady R, Gao Y, Kenney LJ, Yan J (2018) A single molecule analysis of H-NS uncouples DNA binding affinity from DNA specificity. Nucleic Acids Res 46(19): 10216−10224

 

Hales LM, Gumport RI, Gardner JF (1994) Determining the DNA sequence elements required for binding integration host factor to two different target sites. J Bacteriol 176(10): 2999−3006

 

Hall MA, Shundrovsky A, Bai L, Fulbright RM, Lis JT, Wang MD (2009) High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat Struct Mol Biol 16(2): 124−129

 

Hansma HG, Laney DE, Bezanilla M, Sinsheimer RL, Hansma PK (1995) Applications for atomic force microscopy of DNA. Biophys J 68(5): 1672−1677

 
Hansma HG, Pietrasanta LI, Golan R, Sitko JC, Viani MB, Paloczi GT, Smith BL, Thrower D, Hansma PK (2000) Recent highlights from atomic force microscopy of DNA. J Biomol Struct Dyn 17 (Suppl 1):271−275
 

Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3(5): 347−355

 
Holde KEv (1989) Chromatin. New York: Springer-Verlag
 

Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110(5): 2685−2708

 

Kaczmarczyk A, Brouwer TB, Pham C, Dekker NH, van Noort J (2018) Probing chromatin structure with magnetic tweezers. Methods Mol Biol 1814: 297−323

 

Kaczmarczyk A, Meng H, Ordu O, Noort JV, Dekker NH (2020) Chromatin fibers stabilize nucleosomes under torsional stress. Nat Commun 11(1): 126. https://doi.org/10.1038/s41467-019-13891-y

 

Koch SJ, Shundrovsky A, Jantzen BC, Wang MD (2002) Probing protein-DNA interactions by unzipping a single DNA double helix. Biophys J 83(2): 1098−1105

 

Kornberg RD (1977) Structure of chromatin. Annu Rev Biochem 46: 931−954

 

Kruithof M, Chien FT, Routh A, Logie C, Rhodes D, van Noort J (2009) Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 16(5): 534−540

 

Kruithof M, van Noort J (2009) Hidden Markov analysis of nucleosome unwrapping under force. Biophys J 96(9): 3708−3715

 

Krzemien KM, Beckers M, Quack S, Michaelis J (2017) Atomic force microscopy of chromatin arrays reveal non-monotonic salt dependence of array compaction in solution. PLoS one 12(3): e0173459. https://doi.org/10.1371/journal.pone.0173459

 
Lal R, John SA (1994) Biological applications of atomic force microscopy. Am J Physiol 266(1 Pt 1): C1-C21
 

Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi CO, Mavathur R, Muskhelishvili G, Pon CL, Rimsky S, Stella S, Babu MM, Travers A (2007) High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 35(18): 6330−6337

 

Le S, Chen H, Cong P, Lin J, Droge P, Yan J (2013) Mechanosensing of DNA bending in a single specific protein-DNA complex. Sci Rep 3: 3508. https://doi.org/10.1038/srep03508

 

Lee SY, Lim CJ, Droge P, Yan J (2015) Regulation of bacterial DNA packaging in early stationary phase by competitive DNA binding of Dps and IHF. Sci Rep 5: 18146. https://doi.org/10.1038/srep18146

 

Li W, Chen P, Yu J, Dong L, Liang D, Feng J, Yan J, Wang P-Y, Li Q, Zhang Z, Li M, Li G (2016) FACT remodels the tetranucleosomal unit of chromatin fibers for gene transcription. Molecular Cell 64(1): 120−133

 

Liang L, Ma K, Wang Z, Janissen R, Yu Z (2021) Dynamics and inhibition of MLL1 CXXC domain on DNA revealed by single-molecule quantification. Biophys J 120(16): 3283−3291

 

Lim CJ, Lee SY, Kenney LJ, Yan J (2012a) Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing. Sci Rep 2: 509. https://doi.org/10.1038/srep00509

 

Lim CJ, Whang YR, Kenney LJ, Yan J (2012b) Gene silencing H-NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility. Nucleic Acids Res 40(8): 3316−3328

 

Lipfert J, Wiggin M, Kerssemakers JW, Pedaci F, Dekker NH (2011) Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat Commun 2: 439. https://doi.org/10.1038/ncomms1450

 

Liu Y, Chen H, Kenney LJ, Yan J (2010) A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev 24(4): 339−344

 
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648): 251-260
 

Luijsterburg MS, Noom MC, Wuite GJ, Dame RT (2006) The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol 156(2): 262−272

 

Luijsterburg MS, White MF, van Driel R, Dame RT (2008) The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43(6): 393−418

 

Manosas M, Camunas-Soler J, Croquette V, Ritort F (2017) Single molecule high-throughput footprinting of small and large DNA ligands. Nat Commun 8(1): 304. https://doi.org/10.1038/s41467-017-00379-w

 

Mihardja S, Spakowitz AJ, Zhang Y, Bustamante C (2006) Effect of force on mononucleosomal dynamics. Proc Natl Acad Sci USA 103(43): 15871−15876

 

Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6): 491−505

 

Ngo TT, Zhang Q, Zhou R, Yodh JG, Ha T (2015) Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160(6): 1135−1144

 

Norton VG, Imai BS, Yau P, Bradbury EM (1989) Histone acetylation reduces nucleosome core particle linking number change. Cell 57(3): 449−457

 

Ozturk N, Singh I, Mehta A, Braun T, Barreto G (2014) HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol 2: 5. https://doi.org/10.3389/fcell.2014.00005

 

Poirier MG, Bussiek M, Langowski J, Widom J (2008) Spontaneous access to DNA Target sites in folded chromatin fibers. J Mol Biol 379(4): 772−786

 

Prieto AI, Kahramanoglou C, Ali RM, Fraser GM, Seshasayee AS, Luscombe NM (2012) Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. Nucleic Acids Res 40(8): 3524−3537

 

Reeves R (2010) Nuclear functions of the HMG proteins. Biochim Biophys Acta 1799(1-2): 3−14

 

Renault M, Garcia J, Cordeiro TN, Baldus M, Pons M (2013) Protein oligomers studied by solid-state NMR-the case of the full-length nucleoid-associated protein histone-like nucleoid structuring protein. FEBS J 280(12): 2916−2928

 

Rice PA, Yang S, Mizuuchi K, Nash HA (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87(7): 1295−1306

 

Royer CA, Scarlata SF (2008) Fluorescence approaches to quantifying biomolecular interactions. Methods Enzymol 450: 79−106

 

Simpson RT, Thoma F, Brubaker JM (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42(3): 799−808

 

Spurio R, Durrenberger M, Falconi M, La Teana A, Pon CL, Gualerzi CO (1992) Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy. Mol Gen Genet 231(2): 201−211

 

van Noort J, Verbrugge S, Goosen N, Dekker C, Dame RT (2004) Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc Natl Acad Sci USA 101(18): 6969−6974

 

Vlijm R, Lee M, Lipfert J, Lusser A, Dekker C, Dekker NH (2015) Nucleosome assembly dynamics involve spontaneous fluctuations in the handedness of tetrasomes. Cell Rep 10(2): 216−225

 

Vlijm R, Smitshuijzen JS, Lusser A, Dekker C (2012) NAP1-assisted nucleosome assembly on DNA measured in real time by single-molecule magnetic tweezers. PLoS One 7(9): e46306. https://doi.org/10.1371/journal.pone.0046306

 

Wang H, Bash R, Yodh JG, Hager GL, Lohr D, Lindsay SM (2002) Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys J 83(6): 3619−3625

 

Wang Y, Yan J, Goult BT (2019) Force-dependent binding constants. Biochemistry 58(47): 4696−4709

 

Weber G (1952) Polarization of the fluorescence of macromolecules. I. Theory and experimental method. Biochem J 51(2): 145−155

 

Widom J (1989) Toward a unified model of chromatin folding. Annu Rev Biophys Biophys Chem 18: 365−395

 

Winardhi RS, Castang S, Dove SL, Yan J (2014) Single-molecule study on histone-like nucleoid-structuring protein (H-NS) paralogue in Pseudomonas aeruginosa: MvaU bears DNA organization mode similarities to MvaT. PLoS One 9(11): e112246. https://doi.org/10.1371/journal.pone.0112246

 

Winardhi RS, Fu W, Castang S, Li Y, Dove SL, Yan J (2012) Higher order oligomerization is required for H-NS family member MvaT to form gene-silencing nucleoprotein filament. Nucleic Acids Res 40(18): 8942−8952

 

Winardhi RS, Yan J, Kenney LJ (2015) H-NS regulates gene expression and compacts the nucleoid: insights from single-molecule experiments. Biophys J 109(7): 1321−1329

 

Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11(2): 130−135

 

Yan J, Maresca TJ, Skoko D, Adams CD, Xiao B, Christensen MO, Heald R, Marko JF (2007) Micromanipulation studies of chromatin fibers in Xenopus egg extracts reveal ATP-dependent chromatin assembly dynamics. Mol Biol Cell 18(2): 464−474

 

Yoshua SB, Watson GD, Howard JAL, Velasco-Berrelleza V, Leake MC, Noy A (2021) Integration host factor bends and bridges DNA in a multiplicity of binding modes with varying specificity. Nucleic Acids Res 49(15): 8684−8698

 

Yu H, Lim HH, Tjokro NO, Sathiyanathan P, Natarajan S, Chew TW, Klonisch T, Goodman SD, Surana U, Droge P (2014) Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells. Cell Rep 6(4): 684−697

 

Zhao X, Guo S, Lu C, Chen J, Le S, Fu H, Yan J (2019) Single-molecule manipulation quantification of site-specific DNA binding. Curr Opin Chem Biol 53: 106−117

 

Zhao X, Peter S, Droge P, Yan J (2017) Oncofetal HMGA2 effectively curbs unconstrained (+) and (-) DNA supercoiling. Sci Rep 7(1): 8440. https://doi.org/10.1038/s41598-017-09104-5

Biophysics Reports
Pages 212-224
Cite this article:
Zhao X, Liu XP, Yan J. DNA-binding proteins studied by mechanical manipulation and AFM imaging of single DNA molecules. Biophysics Reports, 2022, 8(4): 212-224. https://doi.org/10.52601/bpr.2022.220015

506

Views

14

Downloads

4

Crossref

3

Scopus

0

CSCD

Altmetrics

Received: 22 June 2022
Accepted: 17 July 2022
Published: 08 November 2022
© The Author(s) 2022

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return