AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Publishing Language: Chinese

CRISPR-Cas12a Gene Editing Technology and Its Application in Agricultural Production

Gang LUO1,2( )YiYi CHENG1,2Wen YANG1,2YiMeng XIAO1,2ChengXi YANG1,2
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology/School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu
Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs/The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu
Show Author Information

Abstract

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (CRISPR- Cas) gene editing technology has not only revolutionized life sciences but also catalyzed transformative advancements in agriculture. As a critical branch of the CRISPR system, the CRISPR-Cas12a system exhibits unique molecular characteristics and distinct application potential in biological breeding and disease diagnosis compared to the classical CRISPR-Cas9 system. Unlike the Type II Cas9 system, the Type V Cas12a protein possesses a single RuvC-like nuclease domain, contrasting sharply with the dual HNH-RuvC nuclease domains of Cas9. Cas12a generates staggered double-strand breaks (DSBs) in target DNA while retaining the CRISPR RNA (crRNA) and Cas12a-formed "R-loop". The preservation of this R-loop constitutes the the structural basis for the collateral cleavage activity inherent to the CRISPR-Cas12a system, which underpins its utility in developing nucleic acid and small molecule detection technologies. Recognizing thymine-rich protospacer adjacent motifs (PAMs), CRISPR-Cas12a acts as a powerful complement to existing CRISPR-Cas systems. Its crRNA-dependent autonomous processing mechanism, distinct from the tracrRNA-dependent system of Cas9, offers superior advantages in multiplex gene editing. These features have driven breakthroughs in crop genetic improvement, including the successful development of disease-resistant and high-yield commercial crop varieties. In basic research, catalytically inactive Cas12a (dCas12a) fused with transcriptional regulators or epigenetic modifiers enables precise gene expression regulation without inducing DSBs. Furthermore, its integration with isothermal amplification techniques allows for visual disease detection. This review systematically introduced the CRISPR-Cas12a system from multiple perspectives: (1) classification of Type V Cas proteins, (2) mechanistic principles of Cas12a in bacterial immunity, and (3) functional domains of the Cas12a-crRNA complex. A comparative analysis between CRISPR-Cas12a and CRISPR-Cas9 was conducted across four dimensions: crRNA processing mechanisms, structural-functional features of Cas effectors, editing efficiency, and application scenarios. Additionally, the regulatory systems of CRISPR-dCas12a and CRISPR-dCas9 were evaluated regarding gene expression modulation, epigenetic editing, and base editing. The review also elucidated the molecular detection principles of CRISPR-Cas12a in targeting nucleic acids, proteins, and small molecules, as well as its agricultural applications in gene regulation, base editing, pathogen detection, disease diagnosis, and bio-breeding. With the emergence of safer non-DSB- dependent technologies such as prime editing, the CRISPR-Cas12a system was poised to play an increasingly vital role in crop precision breeding, livestock genetic improvement, and rapid clinical diagnostics. These advancemented promise innovative solutions to global food security challenges and infectious disease control, further cementing CRISPR-Cas12a as a cornerstone tool in agricultural biotechnology and molecular medicine.

References

[1]
MAKAROVA K S, WOLF Y I, KOONIN E V. Comparative genomics of defense systems in Archaea and bacteria. Nucleic Acids Research, 2013, 41(8): 4360-4377.
[2]
SOREK R, LAWRENCE C M, WIEDENHEFT B. CRISPR-mediated adaptive immune systems in bacteria and Archaea. Annual Review of Biochemistry, 2013, 82: 237-266.
[3]
MAKAROVA K S, WOLF Y I, IRANZO J, SHMAKOV S A, ALKHNBASHI O S, BROUNS S J J, CHARPENTIER E, CHENG D, HAFT D H, HORVATH P, et al. Evolutionary classification of CRISPR–cas systems: A burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18(2): 67-83.
[4]
CONG L, RAN F A, COX D, LIN S L, BARRETTO R, HABIB N, HSU P D, WU X B, JIANG W Y, MARRAFFINI L A, ZHANG F. Multiplex genome engineering using CRISPR/cas systems. Science, 2013, 339(6121): 819-823.
[5]
JACKSON S A, MCKENZIE R E, FAGERLUND R D, KIEPER S N, FINERAN P C, BROUNS S J J. CRISPR-cas: Adapting to change. Science, 2017, 356(6333): eaal5056.
[6]
DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213): 1258096.
[7]
FONFARA I, RICHTER H, BRATOVIČ M, LE RHUN A, CHARPENTIER E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 2016, 532(7600): 517-521.
[8]
ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, SLAYMAKER I M, MAKAROVA K S, ESSLETZBICHLER P, VOLZ S E, JOUNG J, VAN DER OOST J, REGEV A, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system. Cell, 2015, 163(3): 759-771.
[9]
CHEN J S, MA E B, HARRINGTON L B, DA COSTA M, TIAN X R, PALEFSKY J M, DOUDNA J A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387): 436-439.
[10]
ZHANG Y X, REN Q R, TANG X, LIU S S, MALZAHN A A, ZHOU J P, WANG J H, YIN D S, PAN C T, YUAN M Z, et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications, 2021, 12: 1944.
[11]
LIN Q P, ZHU Z X, LIU G W, SUN C, LIN D X, XUE C X, LI S N, ZHANG D D, GAO C X, WANG Y P, QIU J L. Genome editing in plants with MAD7 nuclease. Journal of Genetics and Genomics, 2021, 48(6): 444-451.
[12]
WELKER E. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Research, 2020, 48(7): 3722-3733.
[13]
SINGH D, MALLON J, PODDAR A, WANG Y B, TIPPANA R, YANG O, BAILEY S, HA T. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(21): 5444-5449.
[14]
SHMAKOV S, SMARGON A, SCOTT D, COX D, PYZOCHA N, YAN W, ABUDAYYEH O O, GOOTENBERG J S, MAKAROVA K S, WOLF Y I, et al. Diversity and evolution of class 2 CRISPR–cas systems. Nature Reviews Microbiology, 2017, 15(3): 169-182.
[15]
MOON J, LIU C C. Asymmetric CRISPR enabling cascade signal amplification for nucleic acid detection by competitive crRNA. Nature Communications, 2023, 14: 7504.
[16]
SWARTS D C, JINEK M. Cas9 versus Cas12a/Cpf1: Structure– function comparisons and implications for genome editing. WIREs RNA, 2018, 9(5): e1481.
[17]
DELTCHEVA E, CHYLINSKI K, SHARMA C M, GONZALES K, CHAO Y J, PIRZADA Z A, ECKERT M R, VOGEL J, CHARPENTIER E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602-607.
[18]
JINEK M, EAST A, CHENG A, LIN S, MA E B, DOUDNA J. RNA-programmed genome editing in human cells. eLife, 2013, 2: e00471.
[19]
SCHUBERT M S, THOMMANDRU B, WOODLEY J, TURK R, YAN S Q, KURGAN G, MCNEILL M S, RETTIG G R. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair. Scientific Reports, 2021, 11: 19482.
[20]
RAN F A, HSU P D, LIN C Y, GOOTENBERG J S, KONERMANN S, TREVINO A E, SCOTT D A, INOUE A, MATOBA S, ZHANG Y, ZHANG F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6): 1380-1389.
[21]
PAUL B, MONTOYA G. CRISPR-Cas12a: Functional overview and applications. Biomedical Journal, 2020, 43(1): 8-17.
[22]
KHAN S, SALLARD E. Current and prospective applications of CRISPR-Cas12a in pluricellular organisms. Molecular Biotechnology, 2023, 65(2): 196-205.
[23]
GAO L Y, COX D B T, YAN W X, MANTEIGA J C, SCHNEIDER M W, YAMANO T, NISHIMASU H, NUREKI O, CROSETTO N, ZHANG F. Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology, 2017, 35(8): 789-792.
[24]
KLEINSTIVER B P, PREW M S, TSAI S Q, TOPKAR V V, NGUYEN N T, ZHENG Z L, GONZALES A P W, LI Z Y, PETERSON R T, YEH J J, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523(7561): 481-485.
[25]
JACOBSEN T, LIAO C Y, BEISEL C L. The Acidaminococcus sp. Cas12a nuclease recognizes GTTV and GCTV as non-canonical PAMs. FEMS Microbiology Letters, 2019, 366(8): fnz085.
[26]
KIM H K, SONG M, LEE J N, MENON A V, JUNG S, KANG Y M, CHOI J W, WOO E, KOH H C, NAM J W, KIM H. In vivo high-throughput profiling of CRISPR–Cpf1 activity. Nature Methods, 2017, 14(2): 153-159.
[27]
KLEINSTIVER B P, SOUSA A A, WALTON R T, TAK Y E, HSU J Y, CLEMENT K, WELCH M M, HORNG J E, MALAGON-LOPEZ J, SCARFÒ I, MAUS M V, PINELLO L, ARYEE M J, JOUNG J K. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 2019, 37(3): 276-282.
[28]
HUANG H X, HUANG G J, TAN Z H, HU Y F, SHAN L, ZHOU J J, ZHANG X, MA S F, LV W Q, HUANG T, et al. Engineered Cas12a-Plus nuclease enables gene editing with enhanced activity and specificity. BMC Biology, 2022, 20(1): 91.
[29]
SCHINDELE P, PUCHTA H. Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing. Plant Biotechnology Journal, 2020, 18(5): 1118-1120.
[30]
TÓTH E, CZENE B C, KULCSÁR P I, KRAUSZ S L, TÁLAS A, NYESTE A, VARGA É, HUSZÁR K, WEINHARDT N, LIGETI Z, et al. Mb- and FnCpf1 nucleases are active in mammalian cells: Activities and PAM preferences of four wild-type Cpf1 nucleases and of their altered PAM specificity variants. Nucleic Acids Research, 2018, 46(19): 10272-10285.
[31]
WANG L P, WANG H J, LIU H Y, ZHAO Q Y, LIU B, WANG L, ZHANG J, ZHU J, BAO R, LUO Y Z. Improved CRISPR- Cas12a-assisted one-pot DNA editing method enables seamless DNA editing. Biotechnology and Bioengineering, 2019, 116(6): 1463-1474.
[32]
ZETSCHE B, ABUDAYYEH O O, GOOTENBERG J S, SCOTT D A, ZHANG F. A survey of genome editing activity for 16 Cas12a orthologs. The Keio Journal of Medicine, 2020, 69(3): 59-65.
[33]
ZHU D, WANG J Y, YANG D, XI J Z, LI J. High-throughput profiling of Cas12a orthologues and engineered variants for enhanced genome editing activity. International Journal of Molecular Sciences, 2021, 22(24): 13301.
[34]
CHEN P, ZHOU J, WAN Y B, LIU H, LI Y Z, LIU Z X, WANG H J, LEI J, ZHAO K, ZHANG Y L, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biology, 2020, 21(1): 78.
[35]
TENG F, LI J, CUI T T, XU K, GUO L, GAO Q Q, FENG G H, CHEN C Y, HAN D L, ZHOU Q, LI W. Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biology, 2019, 20(1): 15.
[36]
ESMAEILI ANVAR N, LIN C C, MA X D, WILSON L L, STEGER R, SANGREE A K, COLIC M, WANG S H, DOENCH J G, HART T. Efficient gene knockout and genetic interaction screening using the in4mer CRISPR/Cas12a multiplex knockout platform. Nature Communications, 2024, 15: 3577.
[37]
KLEINSTIVER B P, TSAI S Q, PREW M S, NGUYEN N T, WELCH M M, LOPEZ J M, MCCAW Z R, ARYEE M J, JOUNG J K. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nature Biotechnology, 2016, 34(8): 869-874.
[38]
CALVACHE C, VAZQUEZ-VILAR M, SELMA S, URANGA M, FERNÁNDEZ-DEL-CARMEN A, DARÒS J A, ORZÁEZ D. Strong and tunable anti-CRISPR/Cas activities in plants. Plant Biotechnology Journal, 2022, 20(2): 399-408.
[39]
FU Y F, SANDER J D, REYON D, CASCIO V M, JOUNG J K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32(3): 279-284.
[40]
KIM D, KIM J, HUR J K, BEEN K W, YOON S H, KIM J S. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology, 2016, 34(8): 863-868.
[41]
BEGEMANN M B, GRAY B N, JANUARY E, GORDON G C, HE Y H, LIU H J, WU X R, BRUTNELL T P, MOCKLER T C, OUFATTOLE M. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Scientific Reports, 2017, 7: 11606.
[42]
ZHAO Y X. Quality gene OsGBSS I promoter editing using CRISPR/Cas12a system in rice[D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese)
[43]
BERNABÉ-ORTS J M, CASAS-RODRIGO I, MINGUET E G, LANDOLFI V, GARCIA-CARPINTERO V, GIANOGLIO S, VÁZQUEZ-VILAR M, GRANELL A, ORZAEZ D. Assessment of Cas12a-mediated gene editing efficiency in plants. Plant Biotechnology Journal, 2019, 17(10): 1971-1984.
[44]
GAO Z L, FAN M H, DAS A T, HERRERA-CARRILLO E, BERKHOUT B. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA. Nucleic Acids Research, 2020, 48(10): 5527-5539.
[45]
WANG Y Q, LI X F, LIU M L, ZHOU Y J, LI F. Guide RNA scaffold variants enabled easy cloning of large gRNA cluster for multiplexed gene editing. Plant Biotechnology Journal, 2024, 22(2): 460-471.
[46]
WANG M G, MAO Y F, LU Y M, WANG Z D, TAO X P, ZHU J K. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. Journal of Integrative Plant Biology, 2018, 60(8): 626-631.
[47]
LIANG J J. Knockout of Chicken TVB Gene by Multiplexed CRISPR technologies and establishment of a new multiple gene editing[D]. Nanning: Guangxi University, 2022. (in Chinese)
[48]
LI S Y. Establishment and optimization of CRISPR/Cas12a-mediated genome editing and targeted gene replacement systems in rice plants[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[49]
XU X S, QI L S. A CRISPR–dCas toolbox for genetic engineering and synthetic biology. Journal of Molecular Biology, 2019, 431(1): 34-47.
[50]
LIU B, SONG W P, WANG L C, WU Y T, XU X T, NIU X L, HUANG S X, LIU Y S, TANG W. dCas9-BE3 and dCas12a-BE3 systems mediated base editing in kiwifruit canker causal agent Pseudomonas syringae pv. actinidiae. International Journal of Molecular Sciences, 2023, 24(5): 4597.
[51]
WU Y K, LI Y, JIN K, ZHANG L P, LI J H, LIU Y F, DU G C, LV X Q, CHEN J, LEDESMA-AMARO R, LIU L. CRISPR–dCas12a- mediated genetic circuit cascades for multiplexed pathway optimization. Nature Chemical Biology, 2023, 19(3): 367-377.
[52]
SCHILLING C, KOFFAS M A G, SIEBER V, SCHMID J. Novel prokaryotic CRISPR-Cas12a-based tool for programmable transcriptional activation and repression. ACS Synthetic Biology, 2020, 9(12): 3353-3363.
[53]
CIURKOT K, GOROCHOWSKI T E, ROUBOS J A, VERWAAL R. Efficient multiplexed gene regulation in Saccharomyces cerevisiae using dCas12a. Nucleic Acids Research, 2021, 49(13): 7775-7790.
[54]
FLECK N, GRUNDNER C. A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria. Journal of Biological Chemistry, 2021, 297(2): 100990.
[55]
BRYSON J W, AUXILLOS J Y, ROSSER S J. Multiplexed activation in mammalian cells using a split-intein CRISPR/Cas12a based synthetic transcription factor. Nucleic Acids Research, 2022, 50(1): 549-560.
[56]
NIHONGAKI Y, OTABE T, UEDA Y, SATO M. A split CRISPR– Cpf1 platform for inducible genome editing and gene activation. Nature Chemical Biology, 2019, 15(9): 882-888.
[57]
KIEU NGUYEN N T, TU Y, LEE H S, TRUONG V A, CHANG Y H, PHAM N N, CHANG C W, LIN Y H, LAI P L, CHEN P H, et al. Split dCas12a activator for lncRNA H19 activation to enhance BMSC differentiation and promote calvarial bone healing. Biomaterials, 2023, 297: 122106.
[58]
WANG C K, QU Y H, CHENG J K W, HUGHES N W, ZHANG Q H, WANG M D, CONG L. dCas9-based gene editing for cleavage-free genomic knock-in of long sequences. Nature Cell Biology, 2022, 24(2): 268-278.
[59]
YU L F, MARCHISIO M A. CRISPR-associated type V proteins as a tool for controlling mRNA stability in S. cerevisiae synthetic gene circuits. Nucleic Acids Research, 2023, 51(3): 1473-1487.
[60]
CHENG Y H, ZHANG Y X, LI G, FANG H, SRETENOVIC S, FAN A, LI J, XU J P, QUE Q D, QI Y P. CRISPR–Cas12a base editors confer efficient multiplexed genome editing in rice. Plant Communications, 2023, 4(4): 100601.
[61]
REES H A, KOMOR A C, YEH W H, CAETANO-LOPES J, WARMAN M, EDGE A S B, LIU D R. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nature Communications, 2017, 8: 15790.
[62]
HU M L, QIU Z Q, BI Z R, TIAN T, JIANG Y Z, ZHOU X M. Photocontrolled crRNA activation enables robust CRISPR-Cas12a diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(26): e2202034119.
[63]
HE Q, YU D M, BAO M D, KORENSKY G, CHEN J H, SHIN M, KIM J, PARK M, QIN P W, DU K. High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR- Cas12a and fluorescence based point-of-care system. Biosensors and Bioelectronics, 2020, 154: 112068.
[64]
DING X, YIN K, LI Z Y, LALLA R V, BALLESTEROS E, SFEIR M M, LIU C C. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nature Communications, 2020, 11: 4711.
[65]
RANANAWARE S R, VESCO E K, SHOEMAKER G M, ANEKAR S S, SANDOVAL L S W, MEISTER K S, MACALUSO N C, NGUYEN L T, JAIN P K. Programmable RNA detection with CRISPR-Cas12a. Nature Communications, 2023, 14: 5409.
[66]
ABNOUS K, DANESH N M, RAMEZANI M, ALIBOLANDI M, NAMEGHI M A, ZAVVAR T S, TAGHDISI S M. A novel colorimetric aptasensor for ultrasensitive detection of aflatoxin M1 based on the combination of CRISPR-Cas12a, rolling circle amplification and catalytic activity of gold nanoparticles. Analytica Chimica Acta, 2021, 1165: 338549.
[67]
PUNDIR M, LOBANOVA L, PAPAGERAKIS S, CHEN X B, PAPAGERAKIS P. Colorimetric sensing assay based on aptamer- gold nanoparticles for rapid detection of salivary melatonin to monitor circadian rhythm sleep disorders. Analytica Chimica Acta, 2023, 1279: 341777.
[68]
YANG R Q, ZHAO L P, WANG X J, KONG W J, LUAN Y X. Recent progress in aptamer and CRISPR-Cas12a based systems for non-nucleic target detection. Critical Reviews in Analytical Chemistry, 2024, 54(7): 2670-2687.
[69]
WANG J, ZHU G Z, YOU M X, SONG E Q, SHUKOOR M I, ZHANG K J, ALTMAN M B, CHEN Y, ZHU Z, HUANG C Z, TAN W H. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano, 2012, 6(6): 5070-5077.
[70]
FEAGIN T A, MAGANZINI N, SOH H T. Strategies for creating structure-switching aptamers. ACS Sensors, 2018, 3(9): 1611-1615.
[71]
LI C Y, ZHENG B, LI J T, GAO J L, LIU Y H, PANG D W, TANG H W. Holographic optical tweezers and boosting upconversion luminescent resonance energy transfer combined clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a biosensors. ACS Nano, 2021, 15(5): 8142-8154.
[72]
MISHRA R, JOSHI R K, ZHAO K J. Genome editing in rice: recent advances, challenges, and future implications. Frontiers in Plant Science, 2018, 9: 1361.
[73]
ENDO A, MASAFUMI M, KAYA H, TOKI S. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports, 2016, 6: 38169.
[74]
LI G, ZHANG Y X, DAILEY M, QI Y P. Hs1Cas12a and Ev1Cas12a confer efficient genome editing in plants. Frontiers in Genome Editing, 2023, 5: 1251903.
[75]
ZHONG Z H, ZHANG Y X, YOU Q, TANG X, REN Q R, LIU S S, YANG L J, WANG Y, LIU X P, LIU B L, et al. Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Molecular Plant, 2018, 11(7): 999-1002.
[76]
YIN X J, ANAND A, QUICK P, BANDYOPADHYAY A. Editing a stomatal developmental gene in rice with CRISPR/Cpf1. Plant Genome Editing with CRISPR Systems. New York, NY: Springer New York, 2019: 257-268.
[77]
ZHOU J P, LIU G Q, ZHAO Y X, ZHANG R, TANG X, LI L, JIA X Y, GUO Y C, WU Y C, HAN Y S, et al. An efficient CRISPR– Cas12a promoter editing system for crop improvement. Nature Plants, 2023, 9(4): 588-604.
[78]
MALZAHN A A, TANG X, LEE K, REN Q R, SRETENOVIC S, ZHANG Y X, CHEN H Q, KANG M, BAO Y, ZHENG X L, et al. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 2019, 17(1): 9.
[79]
SCHUSTER F, ALDAG P, FRENZEL A, HADELER K G, LUCAS-HAHN A, NIEMANN H, PETERSEN B. CRISPR/Cas12a mediated knock-in of the Polled Celtic variant to produce a polled genotype in dairy cattle. Scientific Reports, 2020, 10: 13570.
[80]
YU K, LIU Z Q, GUI H P, GENG L Z, WEI J, LIANG D W, LV J, XU J P, CHEN X. Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system. BMC Plant Biology, 2021, 21(1): 197.
[81]
SHKEMBI X, SVOBODOVA M, SKOURIDOU V, BASHAMMAKH A S, ALYOUBI A O, O’SULLIVAN C K. Aptasensors for mycotoxin detection: A review. Analytical Biochemistry, 2022, 644: 114156.
[82]
WU Z H, SUN D W, PU H B. CRISPR/Cas12a and G-quadruplex DNAzyme-driven multimodal biosensor for visual detection of Aflatoxin B1. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 302: 123121.
[83]
MA P F, GUO H L, YE H, ZHANG Y, WANG Z P. Structural insights into the AFB1 aptamer coupled with a rationally designed CRISPR/Cas12a-Exo III aptasensor for AFB1 detection. International Journal of Biological Macromolecules, 2023, 225: 1164-1171.
[84]
XU H F, PAN R, HUANG W H, ZHU X. Label-free dual-mode sensing platform based on target-regulated CRISPR–Cas12a activity for ochratoxin A in Morinda officinalis. Analytical Methods, 2023, 15(35): 4518-4523.
[85]
MAO Z F, WANG X J, CHEN R P, ZHOU Z X, REN S Y, LIANG J, GAO Z X. Upconversion-mediated CRISPR-Cas12a biosensing for sensitive detection of ochratoxin A. Talanta, 2022, 242: 123232.
[86]
WANG P, LIU Y M, YU Y, ZHANG Y, PENG J H, NIU L L, ZHANG J. Hydrazone ligation assisted DNAzyme walking nanomachine coupled with CRISPR-Cas12a for lipopolysaccharide analysis. Analytica Chimica Acta, 2021, 1174: 338747.
[87]
SHENG A Z, WANG P, YANG J Y, TANG L F, CHEN F, ZHANG J. MXene coupled with CRISPR-Cas12a for analysis of endotoxin and bacteria. Analytical Chemistry, 2021, 93(10): 4676-4681.
[88]
QIN C, LIU J J, ZHU W Q, ZENG M C, XU K, DING J M, ZHOU H, ZHU J S, KE Y Q, LI L Y, et al. One-pot visual detection of African swine fever virus using CRISPR-Cas12a. Frontiers in Veterinary Science, 2022, 9: 962438.
[89]
ZHANG D S, JIANG S, XIA N W, ZHANG Y W, ZHANG J J, LIU A J, ZHANG C Y, CHEN N H, MEURENS F, ZHENG W L, ZHU J Z. Rapid visual detection of African swine fever virus with a CRISPR/Cas12a lateral flow strip based on structural protein gene D117L. Animals, 2023, 13(23): 3712.
[90]
YANG K K, ZHANG W Y, XU L, LIU Q, SONG X J, SHAO Y, TU J, QI K Z. Facile, ultrasensitive, and highly specific diagnosis of goose astrovirus via reverse transcription-enzymatic recombinase amplification coupled with a CRISPR-Cas12a system detection. Poultry Science, 2022, 101(12): 102208.
[91]
CHENG P P, WU Y T, GUO S S, MA X Y, FEI C Z, XUE F Q, ZHU C G, WANG M, GU F. RPA assay coupled with CRISPR/Cas12a system for the detection of seven Eimeria species in chicken fecal samples. Veterinary Parasitology, 2022, 311: 109810.
[92]
LIU Y Q, LIN L Y, WEI H G, LUO Q L, YANG P K, LIU M Q, WANG Z H, ZOU X H, ZHU H, ZHA G C, et al. Design and development of a rapid meat detection system based on RPA- CRISPR/Cas12a-LFD. Current Research in Food Science, 2023, 7: 100609.
[93]
DUAN M L, LI B Y, ZHAO Y J, LIU Y N, LIU Y, DAI R T, LI X M, JIA F. A CRISPR/Cas12a-mediated, DNA extraction and amplification-free, highly direct and rapid biosensor for Salmonella Typhimurium. Biosensors and Bioelectronics, 2023, 219: 114823.
[94]
LI L X, LI S Y, WU N, WU J C, WANG G, ZHAO G P, WANG J. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synthetic Biology, 2019, 8(10): 2228-2237.
[95]
HILLARY V E, CEASAR S A. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Molecular Biotechnology, 2023, 65(3): 311-325.
[96]
JAYBHAYE S G, CHAVHAN R L, HINGE V R, DESHMUKH A S, KADAM U S. CRISPR-Cas assisted diagnostics of plant viruses and challenges. Virology, 2024, 597: 110160.
[97]
BRANDT K, BARRANGOU R. Applications of CRISPR technologies across the food supply chain. Annual Review of Food Science and Technology, 2019, 10: 133-150.
[98]
REN J L. Improve meat production and virus resistance by simultaneously editing multiple gene in livestock using Cas12iMax[D]. Beijing: Chinese Academy of Agricultural Sciences, 2023. (in Chinese)
[99]
DAVIS J R, BANSKOTA S, LEVY J M, NEWBY G A, WANG X, ANZALONE A V, NELSON A T, CHEN P J, HENNES A D, AN M R, et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nature Biotechnology, 2024, 42(2): 253-264.
[100]
SUN C, LEI Y, LI B S, GAO Q, LI Y J, CAO W, YANG C, LI H C, WANG Z W, LI Y, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nature Biotechnology, 2024, 42(2): 316-327.
[101]
LIANG R H, HE Z X, ZHAO K T, ZHU H C, HU J C, LIU G W, GAO Q, LIU M Y, ZHANG R, QIU J L, GAO C X. Prime editing using CRISPR-Cas12a and circular RNAs in human cells. Nature Biotechnology, 2024, 42(12): 1867-1875.
[102]
DENG F, LI Y, QIAO L C, GOLDYS E. A CRISPR/Cas12a-assisted on-fibre immunosensor for ultrasensitive small protein detection in complex biological samples. Analytica Chimica Acta, 2022, 1192: 339351.
[103]
YUAN G L, XIA X R, ZHANG J C, HUANG J, XIE F, LI X D, CHEN D L, PENG C Y. A novel “signal on-off-super on” sandwich- type aptamer sensor of CRISPR-Cas12a coupled voltage enrichment assay for VEGF detection. Biosensors and Bioelectronics, 2023, 221: 114424.
Scientia Agricultura Sinica
Pages 1434-1450
Cite this article:
LUO G, CHENG Y, YANG W, et al. CRISPR-Cas12a Gene Editing Technology and Its Application in Agricultural Production. Scientia Agricultura Sinica, 2025, 58(7): 1434-1450. https://doi.org/10.3864/j.issn.0578-1752.2025.07.014

215

Views

15

Downloads

0

Crossref

0

Scopus

0

CSCD

Altmetrics

Received: 09 March 2024
Accepted: 03 March 2025
Published: 01 April 2025
© 2025 The Journal of Scientia Agricultura Sinica
Return