Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The last decades have witnessed a rapid development of noninvasive plant phenotyping, capable of detecting plant stress scale levels from the subcellular to the whole population scale. However, even with such a broad range, most phenotyping objects are often just concerned with leaves. This review offers a unique perspective of noninvasive plant stress phenotyping from a multi-organ view. First, plant sensing and responding to abiotic stress from the diverse vegetative organs (leaves, stems, and roots) and the interplays between these vital components are analyzed. Then, the corresponding noninvasive optical phenotyping techniques are also provided, which can prompt the practical implementation of appropriate noninvasive phenotyping techniques for each organ. Furthermore, we explore methods for analyzing compound stress situations, as field conditions frequently encompass multiple abiotic stressors. Thus, our work goes beyond the conventional approach of focusing solely on individual plant organs. The novel insights of the multi-organ, noninvasive phenotyping study provide a reference for testing hypotheses concerning the intricate dynamics of plant stress responses, as well as the potential interactive effects among various stressors.
Lichtenthaler HK. The stress concept in plants: An introduction. Ann N Y Acad Sci. 1998;851:187–198.
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: Improving plant tolerance to stress combination. Plant J. 2022;109(2):373–389.
Alscher RG, Cumming JR. Stress responses in plants: Adaptation and acclimation mechanisms. Hoboken (NJ): Wiley-Liss; 1990.
Mu Q, Guo T, Li X, Yu J. Phenotypic plasticity in plant height shaped by interaction between genetic loci and diurnal temperature range. New Phytol. 2022;233(4):1768–1779.
Al-Tamimi N, Langan P, Bernad V, Walsh J, Mangina E, Negrao S. Capturing crop adaptation to abiotic stress using image-based technologies. Open Biol. 2022;12(6):Article 210353.
Fountas S, Malounas I, Athanasakos L, Avgoustakis I, Espejo-Garcia B. AI-assisted vision for agricultural robots. AgriEngineering. 2022;4(3):674–694.
Machwitz M, Pieruschka R, Berger K, Schlerf M, Aasen H, Fahrner S, Jimenez-Berni J, Baret F, Rascher U. Bridging the gap between remote sensing and plant phenotyping-challenges and opportunities for the next generation of sustainable agriculture. Front Plant Sci. 2021;12:749374.
Sun D, Robbins K, Morales N, Shu Q, Cen H. Advances in optical phenotyping of cereal crops. Trends Plant Sci. 2022;27(2):191–208.
Waiphara P, Bourgenot C, Compton LJ, Prashar A. Optical imaging resources for crop phenotyping and stress detection. Methods Mol Biol. 2022;2494:255–265.
Zahir SADM, Omar AF, Jamlos MF, Azmi MAM, Muncan J. A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection. Sens Actuators A Phys. 2022;338:Article 113468.
Ryckewaert M, Héran D, Simonneau T, Abdelghafour F, Boulord R, Saurin N, Moura D, Mas-Garcia S, Bendoula R. Physiological variable predictions using VIS–NIR spectroscopy for water stress detection on grapevine: Interest in combining climate data using multiblock method. Comput Electron Agric. 2022;197:Article 106973.
Lazarević B, Kontek M, Carović-Stanko K, Clifton-Brown J, Al Hassan M, Trindade LM, Jurišić V. Multispectral image analysis detects differences in drought responses in novel seeded Miscanthus sinensis hybrids. GCB Bioenergy. 2022;14(11):1219–1234.
Zhao Y, Zheng B, Chapman SC, Laws K, George-Jaeggli B, Hammer GL, Jordan DR, Potgieter AB. Detecting sorghum plant and head features from multispectral UAV imagery. Plant Phenomics. 2021;2021:9874650.
Lassalle G. Monitoring natural and anthropogenic plant stressors by hyperspectral remote sensing: Recommendations and guidelines based on a meta-review. Sci Total Environ. 2021;788:Article 147758.
Ruett M, Junker-Frohn LV, Siegmann B, Ellenberger J, Jaenicke H, Whitney C, Luedeling E, Tiede-Arlt P, Rascher U. Hyperspectral imaging for high-throughput vitality monitoring in ornamental plant production. Sci Hortic. 2022;291:110546.
Das S, Chapman S, Christopher J, Choudhury MR, Menzies NW, Apan A, Dang YP. UAV-thermal imaging: A technological breakthrough for monitoring and quantifying crop abiotic stress to help sustain productivity on sodic soils—A case review on wheat. Remote Sens Appl. 2021;23:100583.
Moustakas M, Calatayud Á, Guidi L. Chlorophyll fluorescence imaging analysis in biotic and abiotic stress. Front Plant Sci. 2021;12:658500.
Jin X, Zarco-Tejada PJ, Schmidhalter U, Reynolds MP, Hawkesford MJ, Varshney RK, Yang T, Nie C, Li Z, Ming B, et al. High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geosci Remote Sens Mag. 2021;9(1):200–231.
Piovesan A, Vancauwenberghe V, Van De Looverbosch T, Verboven P, Nicolai B. X-ray computed tomography for 3D plant imaging. Trends Plant Sci. 2021;26(11):1171–1185.
Kotwaliwale N, Singh K, Kalne A, Jha SN, Seth N, Kar A. X-ray imaging methods for internal quality evaluation of agricultural produce. J Food Sci Technol. 2014;51(1):1–15.
Forero MG, Murcia HF, Mendez D, Betancourt-Lozano J. LiDAR platform for acquisition of 3D plant phenotyping database. Plants. 2022;11(17):2199.
Jin SC, Sun XL, Wu FF, Su YJ, Li YM, Song SL, Xu KX, Ma Q, Baret F, Jiang D, et al. Lidar sheds new light on plant phenomics for plant breeding and management: Recent advances and future prospects. ISPRS J Photogramm Remote Sens. 2021;171:202–223.
van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D, Buhler J, Schurr U, Jahnke S. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol. 2016;170(3):1176–1188.
Mincke J, Courtyn J, Vanhove C, Vandenberghe S, Steppe K. Guide to plant-PET imaging using 11CO2. Front Plant Sci. 2021;12:602550.
Song P, Wang J, Guo X, Yang W, Zhao C. High-throughput phenotyping: Breaking through the bottleneck in future crop breeding. Crop J. 2021;9(3):633–645.
De Diego N, Furst T, Humplik JF, Ugena L, Podlesakova K, Spichal L. An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation in stress conditions. Front Plant Sci. 2017;8:1702.
Marchetti CF, Ugena L, Humplik JF, Polak M, Cavar Zeljkovic S, Podlesakova K, Furst T, De Diego N, Spichal L. A novel image-based screening method to study water-deficit response and recovery of barley populations using canopy dynamics phenotyping and simple metabolite profiling. Front Plant Sci. 2019;10:1252.
Zea M, Souza A, Yang Y, Lee L, Nemali K, Hoagland L. Leveraging high-throughput hyperspectral imaging technology to detect cadmium stress in two leafy green crops and accelerate soil remediation efforts. Environ Pollut. 2022;292:Article 118405.
Christenhusz MJ, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261(3):201–217.
Anil Kumar S, Hima Kumari P, Nagaraju M, Sudhakar Reddy P, Durga Dheeraj T, Mack A, Katam R, Kavi Kishor PB. Genome-wide identification and multiple abiotic stress transcript profiling of potassium transport gene homologs in Sorghum bicolor. Front Plant Sci. 2022;13:965530.
Li H, Wang Y, Fan K, Mao Y, Shen Y, Ding Z. Evaluation of important phenotypic parameters of tea plantations using multi-source remote sensing data. Front Plant Sci. 2022;13:898962.
Bernhardt JR, O'Connor MI, Sunday JM, Gonzalez A. Life in fluctuating environments. Philos Trans R Soc B. 1814;2020(375):20190454.
Bohnert HJ, Nelson DE, Jensen RG. Adaptations to environmental stresses. Plant Cell. 1995;7(7):1099–1111.
Malone SR, Ashworth EN. Freezing stress response in woody tissues observed using low-temperature scanning electron microscopy and freeze substitution techniques. Plant Physiol. 1991;95(3):871–881.
Taiz L, Zeiger E, Møller IM, Murphy A. Plant physiology and development. Sunderland (MA): Sinauer Associates Incorporated; 2015.
Ye D, Wu L, Li X, Atoba TO, Wu W, Weng H. A synthetic review of various dimensions of non-destructive plant stress phenotyping. Plants. 2023;12(8):1698.
Shimazaki K-i, Doi M, Assmann SM, Kinoshita T. Light regulation of stomatal movement. Annu Rev Plant Biol. 2007;58(1):219–247.
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 2015;82(3):449–465.
Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M. Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA. 2003;100(8):4921–4926.
Farquhar GD, von Caemmerer S, Berry JA. Models of photosynthesis. Plant Physiol. 2001;125(1):42–45.
Wang X, Wang F, Sang Y, Liu H. Full-spectrum solar light activated photocatalysts for light chemical energy conversion. Adv Energy Mater. 2017;7(23):1700473.
Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol. 2010;91:29–66.
Fu P, Montes CM, Siebers MH, Gomez-Casanovas N, McGrath JM, Ainsworth EA, Bernacchi CJ. Advances in field-based high-throughput photosynthetic phenotyping. J Exp Bot. 2022;73(10):3157–3172.
Demmig-Adams B, Adams Iii W. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Biol. 1992;43(1):599–626.
Han Y, Lee J, Haiping G, Kim K-H, Wanxi P, Bhardwaj N, Oh J-M, Brown RJC. Plant-based remediation of air pollution: A review. J Environ Manag. 2022;301:Article 113860.
Molnár VÉ, Simon E, Tóthmérész B, Ninsawat S, Szabó S. Air pollution induced vegetation stress—The air pollution tolerance index as a quick tool for city health evaluation. Ecol Indic. 2020;113:Article 106234.
Shannigrahi AS, Fukushima T, Sharma RC. Anticipated air pollution tolerance of some plant species considered for green belt development in and around an industrial/urban area in India: An overview. Int J Environ Stud. 2004;61(2):125–137.
Agbaire P, Esiefarienrhe E. Air pollution tolerance indices (apti) of some plants around Otorogun Gas Plant in Delta State, Nigeria. J Appl Sci Environ Manag. 2009;13(1):1–14.
Banerjee S, Banerjee A, Palit D. Morphological and biochemical study of plant species—A quick tool for assessing the impact of air pollution. J Clean Prod. 2022;339:Article 130647.
Sanaeifar A, Zhang W, Chen H, Zhang D, Li X, He Y. Study on effects of airborne Pb pollution on quality indicators and accumulation in tea plants using Vis-NIR spectroscopy coupled with radial basis function neural network. Ecotoxicol Environ Saf. 2022;229:Article 113056.
Maxwell K, Johnson GN. Chlorophyll fluorescence—A practical guide. J Exp Bot. 2000;51(345):659–668.
Sun D, Xu Y, Cen H. Optical sensors: Deciphering plant phenomics in breeding factories. Trends Plant Sci. 2022;27(2):209–210.
Feng X, Zhan Y, Wang Q, Yang X, Yu C, Wang H, Tang Z, Jiang D, Peng C, He Y. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping. Plant J. 2020;101(6):1448–1461.
Feng X, Yu Z, Fang H, Jiang H, Yang G, Chen L, Zhou X, Hu B, Qin C, Hu G, et al. Plantorganelle hunter is an effective deep-learning-based method for plant organelle phenotyping in electron microscopy. Nat Plants. 2023;9(10):1760–1775.
Ye Z-H. Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol. 2002;53(1):183–202.
Fukuda H, Ohashi-Ito K. Vascular tissue development in plants. Curr Top Dev Biol. 2019;131:141–160.
Tyree MT, Zimmermann MH. Xylem structure and the ascent of sap. Heidelberg (Germany): Springer Science & Business Media; 2013.
Ding Y, Yang S. Surviving and thriving: How plants perceive and respond to temperature stress. Dev Cell. 2022;57(8):947–958.
Sweetlove LJ, Ratcliffe RG. Flux-balance modeling of plant metabolism. Front Plant Sci. 2011;2:38.
Mishra D, Shekhar S, Chakraborty S, Chakraborty N. High temperature stress responses and wheat: Impacts and alleviation strategies. Environ Exp Bot. 2021;190:Article 104589.
Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A. Plant adaptations to the combination of drought and high temperatures. Physiol Plant. 2018;162(1):2–12.
Fu JJ, Liu J, Yang LY, Miao YJ, Xu YF. Effects of low temperature on seed germination, early seedling growth and antioxidant systems of the wild Elymus nutans Griseb. J Agric Sci Technol. 2017;19(5):1113–1125.
Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Front Plant Sci. 2018;9:393.
Yadav SK. Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev. 2010;30(3):515–527.
Thomashow MF. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 1998;118(1):1–8.
Knight MR, Knight H. Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol. 2012;195(4):737–751.
Wang F. Research progress of phenotype and physiological response mechanism of plants under low temperature stress. Mol Plant Breed. 2018;17:5144–5153.
Kim HK, Park J, Hwang I. Investigating water transport through the xylem network in vascular plants. J Exp Bot. 2014;65(7):1895–1904.
Vandegehuchte MW, Steppe K. Sap-flux density measurement methods: Working principles and applicability. Funct Plant Biol. 2013;40(3):213–223.
Green S, Clothier B, Jardine B. Theory and practical application of heat pulse to measure sap flow. Agron J. 2003;95(6):1371–1379.
Ritman K, Milburn J. Acoustic emissions from plants: Ultrasonic and audible compared. J Exp Bot. 1988;39(9):1237–1248.
Dostál P, Sriwongras P, Trojan V. Detection of acoustic emission characteristics of plant according to water stress condition. Acta Univ Agric Silvic Mendel Brun. 2016;64(5):1465–1471.
De Roo L, Vergeynst LL, De Baerdemaeker NJ, Steppe K. Acoustic emissions to measure drought-induced cavitation in plants. Appl Sci. 2016;6(3):71.
Chai Y, Chen C, Luo X, Zhan S, Kim J, Luo J, Wang X, Hu Z, Ying Y, Liu X. Cohabiting plant-wearable sensor in situ monitors water transport in plant. Adv Sci. 2021;8(10):2003642.
Chen R, Ren S, Li S, Han D, Qin K, Jia X, Zhou H, Gao Z. Recent advances and prospects in wearable plant sensors. Rev Environ Sci Biotechnol. 2023;22(4):933–968.
Zwieniecki MA, Melcher PJ, Ahrens ET. Analysis of spatial and temporal dynamics of xylem refilling in Acer rubrum L. using magnetic resonance imaging. Front Plant Sci. 2013;4:265.
Hubeau M, Steppe K. Plant-PET scans: In vivo mapping of xylem and phloem functioning. Trends Plant Sci. 2015;20(10):676–685.
Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J. Root hairs. Arabidopsis Book. 2014;12:e0172.
Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368(6488):266–269.
Loreti E, van Veen H, Perata P. Plant responses to flooding stress. Curr Opin Plant Biol. 2016;33:64–71.
Cohen I, Zandalinas SI, Huck C, Fritschi FB, Mittler R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol Plant. 2021;171(1):66–76.
Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS. Mechanism of stomatal closure in plants exposed to drought and cold stress. Adv Exp Med Biol. 2018;1081:215–232.
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: Effects, mechanisms and management. Agron Sustain Dev. 2009;29(1):185–212.
Basu S, Ramegowda V, Kumar A, Pereira A. Plant adaptation to drought stress. F1000Res. 2016;5:F1000.
Kusvuran S. Microalgae (Chlorella vulgaris Beijerinck) alleviates drought stress of broccoli plants by improving nutrient uptake, secondary metabolites, and antioxidative defense system. Hortic Plant J. 2021;7(3):221–231.
Danzi D, De Paola D, Petrozza A, Summerer S, Cellini F, Pignone D, Janni M. The use of near-infrared imaging (NIR) as a fast non-destructive screening tool to identify drought-tolerant wheat genotypes. Agriculture. 2022;12(4):537.
Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup KH, Hill RD, et al. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol. 2017;214(4):1403–1407.
Tian L-x, Zhang Y-c, Chen P-l, Zhang F-f, Li J, Yan F, Dong Y, Feng BL, Li J, Yan F, et al. How does the waterlogging regime affect crop yield? A global meta-analysis. Front Plant Sci. 2021;12:Article 634898.
Jia W, Ma M, Chen J, Wu S. Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. Int J Mol Sci. 2021;22(3):1088.
Haj-Amor Z, Araya T, Kim D-G, Bouri S, Lee J, Ghiloufi W, Yang Y, Kang H, Jhariya MK, Banerjee A, et al. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Sci Total Environ. 2022;843:Article 156946.
Pandey R, Vengavasi K, Hawkesford MJ. Plant adaptation to nutrient stress. Plant Physiol Rep. 2021;26(4):583–586.
Bouain N, Krouk G, Lacombe B, Rouached H. Getting to the root of plant mineral nutrition: Combinatorial nutrient stresses reveal emergent properties. Trends Plant Sci. 2019;24(6):542–552.
Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol Biochem. 2020;156:64–77.
Maathuis FJM. Physiological functions of mineral macronutrients. Curr Opin Plant Biol. 2009;12(3):250–258.
Kochhar S, Gujral SK. Plant physiology: Theory and applications. Cambridge (UK): Cambridge University Press; 2020.
Espejo-Garcia B, Malounas I, Mylonas N, Kasimati A, Fountas S. Using EfficientNet and transfer learning for image-based diagnosis of nutrient deficiencies. Comput Electron Agric. 2022;196:Article 106868.
Amtmann A, Armengaud P. Effects of N, P, K and S on metabolism: New knowledge gained from multi-level analysis. Curr Opin Plant Biol. 2009;12(3):275–283.
We Z, Pan X, Zhao Q, Zhao T. Plant growth, antioxidative enzyme, and cadmium tolerance responses to cadmium stress in Canna orchioides. Hortic Plant J. 2021;7(3):256–266.
Li X, Zhou D. A meta-analysis on phenotypic variation in cadmium accumulation of Rice and wheat: Implications for food cadmium risk control. Pedosphere. 2019;29(5):545–553.
Ghori N-H, Ghori T, Hayat M, Imadi S, Gul A, Altay V, Ozturk M. Heavy metal stress and responses in plants. Int J Environ Sci Technol. 2019;16(3):1807–1828.
Xie LH, Tang SQ, Wei XJ, Shao GN, Jiao GA, Sheng ZH, Luo J, Hu PS. The cadmium and lead content of the grain produced by leading Chinese rice cultivars. Food Chem. 2017;217:217–224.
Singh DJ, Kalamdhad A. Effects of heavy metals on soil, plants, human health and aquatic life. Int J Res Chem Environ. 2011;1(2):15–21.
Kuijken RC, van Eeuwijk FA, Marcelis LF, Bouwmeester HJ. Root phenotyping: From component trait in the lab to breeding. J Exp Bot. 2015;66(18):5389–5401.
Liu S, Barrow CS, Hanlon M, Lynch JP, Bucksch A. DIRT/3D: 3D root phenotyping for field-grown maize (Zea mays). Plant Physiol. 2021;187(2):739–757.
Herrero-Huerta M, Raumonen P, Gonzalez-Aguilera D. 4DRoot: Root phenotyping software for temporal 3D scans by X-ray computed tomography. Front Plant Sci. 2022;13:Article 986856.
Jahnke S, Menzel MI, Van Dusschoten D, Roeb GW, Bühler J, Minwuyelet S, Blümler P, Temperton VM, Hombach T, Streun M, et al. Combined MRI–PET dissects dynamic changes in plant structures and functions. Plant J. 2009;59(4):634–644.
Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ. Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil. 2012;352(1):1–22.
Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11(1):15–19.
Mittler R, Blumwald E. Genetic engineering for modern agriculture: Challenges and perspectives. Annu Rev Plant Biol. 2010;61(1):443–462.
Enders TA, St. Dennis S, Oakland J, Callen ST, Gehan MA, Miller ND, Spalding EP, Springer NM, Hirsch CD. Classifying cold-stress responses of inbred maize seedlings using RGB imaging. Plant Direct. 2019;3(1):Article e00104.
Tackenberg O. A new method for non-destructive measurement of biomass, growth rates, vertical biomass distribution and dry matter content based on digital image analysis. Ann Bot. 2007;99(4):777–783.
Rahaman MM, Chen D, Gillani Z, Klukas C, Chen M. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci. 2015;6:619.
Neto AJS, Lopes DC, Pinto FA, Zolnier S. Vis/NIR spectroscopy and chemometrics for non-destructive estimation of water and chlorophyll status in sunflower leaves. Biosyst Eng. 2017;155:124–133.
Cui LH, Yan LJ, Zhao XH, Yuan L, Jin J, Zhang JC. Detection and discrimination of tea plant stresses based on hyperspectral imaging technique at a canopy level. Phyton Int J Exp Bot. 2021;90(2):621–634.
Xu R, Li CY, Paterson AH. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping. PLOS ONE. 2019;14(2):e0205083.
Mishra P, Asaari MSM, Herrero-Langreo A, Lohumi S, Diezma B, Scheunders P. Close range hyperspectral imaging of plants: A review. Biosyst Eng. 2017;164:49–67.
Pineda M, Barón M, Pérez-Bueno M-L. Thermal imaging for plant stress detection and phenotyping. Remote Sens. 2020;13(1):68.
Khanal S, Fulton J, Shearer S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput Electron Agric. 2017;139:22–32.
Yu S, Zhang N, Kaiser E, Li G, An D, Sun Q, Chen W, Liu W, Luo W. Integrating chlorophyll fluorescence parameters into a crop model improves growth prediction under severe drought. Agric For Meteorol. 2021;303:Article 108367.
Cendrero-Mateo MP, Moran MS, Papuga SA, Thorp KR, Alonso L, Moreno J, Ponce-Campos G, Rascher U, Wang G. Plant chlorophyll fluorescence: Active and passive measurements at canopy and leaf scales with different nitrogen treatments. J Exp Bot. 2015;67(1):275–286.
Yang J, Song S, Du L, Shi S, Gong W, Sun J, Chen B. Analyzing the effect of fluorescence characteristics on leaf nitrogen concentration estimation. Remote Sens. 2018;10(9):1402.
Möller M, Alchanatis V, Cohen Y, Meron M, Tsipris J, Naor A, Ostrovsky V, Sprintsin M, Cohen S. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J Exp Bot. 2007;58(4):827–838.
Quan L, Tan P, Zeng G, Yuan L, Wang J, Kang SB. Image-based plant modeling. ACM Trans Graph. 2006;25(3):599–604.
Kim JJ, Allison LK, Andrew TL. Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci Adv. 2019;5(3):eaaw0463.
Su YJ, Wu FF, Ao ZR, Jin SC, Qin F, Liu BX, Pang SX, Liu LL, Guo QH. Evaluating maize phenotype dynamics under drought stress using terrestrial lidar. Plant Methods. 2019;15:11.
Perez-Sanz F, Navarro PJ, Egea-Cortines M. Plant phenomics: An overview of image acquisition technologies and image data analysis algorithms. Gigascience. 2017;6(11):1–18.
Li YL, Wen WL, Miao T, Wu S, Yu ZT, Wang XD, Guo XY, Zhao CJ. Automatic organ-level point cloud segmentation of maize shoots by integrating high-throughput data acquisition and deep learning. Comput Electron Agric. 2022;193:106702.
Gomez FE, Carvalho G Jr, Shi F, Muliana AH, Rooney WL. High throughput phenotyping of morpho-anatomical stem properties using X-ray computed tomography in sorghum. Plant Methods. 2018;14:59.
Okochi T, Hoshino Y, Fujii H, Mitsutani T. Nondestructive tree-ring measurements for Japanese oak and Japanese beech using micro-focus X-ray computed tomography. Dendrochronologia. 2007;24(2):155–164.
Blümich B, Callaghan PT. Principles of nuclear magnetic resonance microscopy. New Jersey (USA): Wiley Online Library; 1995.
Köckenberger W, De Panfilis C, Santoro D, Dahiya P, Rawsthorne S. High resolution NMR microscopy of plants and fungi. J Microsc. 2004;214(2):182–189.
Zhou YF, Maitre R, Hupel M, Trotoux G, Penguilly D, Mariette F, Bousset L, Chevre AM, Parisey N. An automatic non-invasive classification for plant phenotyping by MRI images: An application for quality control on cauliflower at primary meristem stage. Comput Electron Agric. 2021;187:106303.
Windt CW, Vergeldt FJ, De Jager PA, Van As H. MRI of long-distance water transport: A comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ. 2006;29(9):1715–1729.
Galieni A, D’Ascenzo N, Stagnari F, Pagnani G, Xie QG, Pisante M. Past and future of plant stress detection: An overview from remote sensing to positron emission tomography. Front Plant Sci. 2021;11:609155.
Arino-Estrada G, Mitchell GS, Saha P, Arzani A, Cherry SR, Blumwald E, Kyme AZ. Imaging salt uptake dynamics in plants using PET. Sci Rep. 2019;9(1):18626.
Kuchenbuch RO, Ingram KT. Image analysis for non-destructive and non-invasive quantification of root growth and soil water content in rhizotrons. J Plant Nutr Soil Sci. 2002;165(5):573–581.
Amato M, Basso B, Celano G, Bitella G, Morelli G, Rossi R. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. Tree Physiol. 2008;28(10):1441–1448.
Whalley WR, Binley A, Watts C, Shanahan P, Dodd IC, Ober E, Ashton R, Webster C, White R, Hawkesford MJ. Methods to estimate changes in soil water for phenotyping root activity in the field. Plant Soil. 2017;415(1):407–422.
Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).