Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Roots are essential for acquiring water and nutrients to sustain and support plant growth and anchorage. However, they have been studied less than the aboveground traits in phenotyping and plant breeding until recent decades. In modern times, root properties such as morphology and root system architecture (RSA) have been recognized as increasingly important traits for creating more and higher quality food in the “Second Green Revolution”. To address the paucity in RSA and other root research, new technologies are being investigated to fill the increasing demand to improve plants via root traits and overcome currently stagnated genetic progress in stable yields. Artificial intelligence (AI) is now a cutting-edge technology proving to be highly successful in many applications, such as crop science and genetic research to improve crop traits. A burgeoning field in crop science is the application of AI to high-resolution imagery in analyses that aim to answer questions related to crops and to better and more speedily breed desired plant traits such as RSA into new cultivars. This review is a synopsis concerning the origins, applications, challenges, and future directions of RSA research regarding image analyses using AI.
Ameen A, Raza S. Green Revolution: A review. Int J Adv Sci Res. 2017;3: 129–137.
Lynch JP. Roots of the Second Green Revolution. Aust J Bot. 2007;55: 493–512.
York LM, Nord EA, Lynch JP. Integration of root phenes for soil resource acquisition. Front Plant Sci. 2013;4:355.
Maqbool S, Hassan MA, Xia X, York LM, Rasheed A, He Z. Root system architecture in cereals: Progress, challenges and perspective. Plant J. 2022;110(1):23–42.
Kell DB. Breeding crop plants with deep roots: Their role in sustainable carbon, nutrient and water sequestration. Ann Bot. 2011;108(3):407–418.
Bishopp A, Lynch JP. The hidden half of crop yields. Nat Plants. 2015;1:15117.
Lynch J. Root architecture and plant productivity. Plant Physiol. 1995;109(1):7–13.
Herder GD, van Isterdael G, Beeckman T, de Smet I. The roots of a new Green Revolution. Trends Plant Sci. 2010;15(11):600–607.
Voss-Fels KP, Snowdon RJ, Hickey LT. Designer roots for future crops. Trends Plant Sci. 2018;23(11):957–960.
Bucciarelli B, Xu Z, Ao S, Cao Y, Monteros MJ, Topp CN, Samac DA. Phenotyping seedlings for selection of root system architecture in alfalfa (Medicago sativa L.). Plant Methods. 2021;17(1):125.
Uga Y. Challenges to design-oriented breeding of root system architecture adapted to climate change. Breed Sci. 2021;71(1):3–12.
Falk KG, Jubery TZ, Mirnezami SV, Parmley KA, Sarkar S, Singh A, Ganapathysubramanian B, Singh AK. Computer vision and machine learning enabled soybean root phenotyping pipeline. Plant Methods. 2020;16:5.
Xu Z, York LM, Seethepalli A, Bucciarelli B, Cheng H, Samac DA. Objective phenotyping of root system architecture using image augmentation and machine learning in alfalfa (Medicago sativa L.). Plant Phenomics. 2022;2022:9879610.
McGrail RK, Van Sanford DA, McNear DH. Trait-based root phenotyping as a necessary tool for crop selection and improvement. Agronomy. 2020;10(9):1328.
York LM, Galindo-Castaneda T, Schussler JR, Lynch JP. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot. 2015;66(8):2347–2358.
Craine JM, Lee WG. Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia. 2003;134(4):471–478.
Tang Z, Parajuli A, Chen CJ, Hu Y, Revolinski S, Medina CA, Lin S, Zhang Z, Yu LX. Validation of UAV-based alfalfa biomass predictability using photogrammetry with fully automatic plot segmentation. Sci Rep. 2021;11(1):3336.
Trachsel S, Kaeppler SM, Brown KM, Lynch JP. Shovelomics: High throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil. 2011;341(1):75–87.
Burridge J, Jochua CN, Bucksch A, Lynch JP. Legume shovelomics: High-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crop Res. 2016;192:21–32.
Bak F, Lyhne-Kjærbye A, Tardif S, Dresbøll DB, Nybroe O, Nicolaisen MH. Deep-rooted plant species recruit distinct bacterial communities in the subsoil. Phytobiomes J. 2022;6(3):236–246.
Wasson AP, Nagel KA, Tracy S, Watt M. Beyond digging: Noninvasive root and rhizosphere phenotyping. Trends Plant Sci. 2020;25(1):119–120.
Johnson MG, Tingey DT, Phillips DL, Storm MJ. Advancing fine root research with minirhizotrons. Environ Exp Bot. 2001;45(3):263–289.
Zhang Z, Fan B, Song C, Zhang X, Zhao Q, Ye B. Advances in root system architecture: Functionality, plasticity, and research methods. J Resour Ecol. 2022;14(1):15–24.
Metzner R, Eggert A, van Dusschoten D, Pflugfelder D, Gerth S, Schurr U, Uhlmann N, Jahnke S. Direct comparison of MRI and x-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods. 2015;11(1):17.
Hainsworth JM, Alymore LAG. The use of computer-assisted tomography to determine spatial distribution of soil water content. Aust J Soil Res. 1983;21(4):435–443.
Tötzke C, Kardjilov N, Manke I, Oswald SE. Capturing 3D water flow in rooted soil by ultra-fast neutron tomography. Sci Rep. 2017;7(1):6192.
Jayapalan DFS, Ananth JP. Internet of things-based root disease classification in alfalfa plants using hybrid optimization-enabled deep convolutional neural network. Concurr Comput. 2023;35(3): Article e7504.
Lu Y, Wang Y, Chen Z, Khan A, Salvaggio C, Lu G. 3D plant root system reconstruction based on fusion of deep structure-from-motion and IMU. Multimed Tools Appl. 2021;80(11):17315–17331.
Huang Y, Yan J, Zhang Y, Ye W, Zhang C, Gao P, Lv X. Automatic segmentation of cotton roots in high-resolution minirhizotron images based on improved OCRNet. Front Plant Sci. 2023;14:1147034.
Narisetti N, Henke M, Seiler C, Junker A, Ostermann J, Altmann T, Gladilin E. Fully-automated root image analysis (faRIA). Sci Rep. 2021;11(1):16047.
Kinose R, Utsumi Y, Iwamura M, Kise K. Tiller estimation method using deep neural networks. Front Plant Sci. 2023;13:1016507.
Deng R, Jiang Y, Tao M, Huang X, Bangura K, Liu C, Lin J, Qi L. Deep learning-based automatic detection of productive tillers in rice. Comput Electron Agric. 2020;177: Article 105703.
Wang C, Li X, Caragea D, Bheemanahallia R, Jagadish SVK. Root anatomy based on root cross-section image analysis with deep learning. Comput Electron Agric. 2020;175: Article 105549.
Singh A, Ganapathysubramanian B, Singh AK, Sarkar S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016;21(2):110–124.
Atkinson JA, Pound MP, Bennett MJ, Wells DM. Uncovering the hidden half of plants using new advances in root phenotyping. Curr Opin Biotechnol. 2019;55:1–8.
Smith AG, Han E, Petersen J, Olsen NAF, Giese C, Athmann M, Dresbøll DB, Thorup-Kristensen K. Root painter: Deep learning segmentation of biological images with corrective annotation. New Phytol. 2022;236(2):774–791.
Seethepalli A, Dhakal K, Griffiths M, Guo H, Freschet GT, York LM. RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. AoB Plants. 2021;13(6):plab056.
Seethepalli A, Guo H, Liu X, Griffiths M, Almtarfi H, Li Z, Liu S, Zare A, Fritschi FB, Blancaflor EB, et al. RhizoVision Crown: An integrated hardware and software platform for root crown phenotyping. Plant Phenomics. 2020;2020:3074916.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444.
LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–551.
Perez-Sanz F, Navarro PJ, Egea-Cortines M. Plant phenomics: An overview of image acquisition technologies and image data analysis algorithms. Gigascience. 2017;6(11):1–18.
Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Mark. 2021;31(3):685–695.
Khaki S, Wang L, Archontoulis SV. A CNN-RNN framework for crop yield prediction. Front Plant Sci. 2020;10:1750.
Dufaux F. Grand challenges in image processing. Front Signal Process. 2021;1:675547.
Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–2324.
Xu M, Yoon S, Fuentes A, Park DS. A comprehensive survey of image augmentation techniques for deep learning. Pattern Recogn. 2023;137: Article 109347.
Srivastava N, Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(56):1929–1958.
Zhao J, Bodner G, Rewald B. Phenotyping: Using machine learning for improved pairwise genotype classification based on root traits. Front Plant Sci. 2016;7:1864.
Li F-F, Fergus R, Perona P. One-shot learning of object categories. IEEE Trans Pattern Anal Mach Intell. 2006;28(4):594–611.
Smith AG, Petersen J, Selvan R, Rasmussen CR. Segmentation of roots in soil with U-Net. Plant Methods. 2020;16(1):13.
Baykalov P, Bussmann B, Nair R, Smith AG, Bodner G, Hadar O, Lazarovitch N, Rewald B. Semantic segmentation of plant roots from RGB (mini-) rhizotron images—Generalisation potential and false positives of established methods and advanced deep-learning models. Plant Methods. 2023;19(1):122.
Wang X, Cao W. GACN: Generative adversarial classified network for balancing plant disease dataset and plant disease recognition. Sensors. 2023;23(15):6844.
Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Understanding deep learning (still) requires rethinking generalization. Commun ACM. 2021;64(3):107–115.
Seidenthal K, Panjvani K, Chandnani R, Kochian L, Eramian M. Iterative image segmentation of plant roots for high-throughput phenotyping. Sci Rep. 2022;12(1):16563.
Marcinkevičs R, Vogt JE. Interpretable and explainable machine learning: A methods-centric overview with concrete examples. Wires Data Min Knowl Discov. 2023;13(3): Article e1493.
Northcutt C, Jiang L, Chuang I. Confident learning: Estimating uncertainty in dataset labels. J Artif Intell Res. 2021;70:1373–1411.
Akhtar N, Mian A. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access. 2018;6:14410–14430.
Jäkel F, Singh M, Wichmann FA, Herzog MH. An overview of quantitative approaches in Gestalt perception. Vis Res. 2016;126:3–8.
Zhong D, Novais J, Grift TE, Bohn M, Han J. Maize root complexity analysis using a support vector machine method. Comput Electron Agric. 2009;69(1):46–50.
Yasrab R, Atkinson JA, Wells DM, French AP, Pridmore TP, Pound MP. RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. Gigascience. 2019;8(11):giz123.
Yu G, Zare A, Sheng H, Matamala R, Reyes-Cabrera J, Fritschi FB, Juenger TE. Root identification in minirhizotron imagery with multiple instance learning. Mach Vis Appl. 2020;31(6):43.
Shen C, Liu L, Zhu L, Kang J, Wang N, Shao L. High-throughput in situ root image segmentation based on the improved DeepLabv3+ method. Front Plant Sci. 2020;11:576791.
Kang J, Liu L, Zhang F, Shen C, Wang N, Shao L. Semantic segmentation model of cotton roots in-situ image based on attention mechanism. Comput Electron Agric. 2021;189: Article 106370.
Lube V, Noyan MA, Przybysz A, Salama K, Blilou I. MultipleXLab: A high-throughput portable live-imaging root phenotyping platform using deep learning and computer vision. Plant Methods. 2022;18(1):38.
Bauer FM, Lärm L, Morandage S, Lobet G, Vanderborght J, Vereecken H, Schnepf A. Development and validation of a deep learning based automated minirhizotron image analysis pipeline. Plant phenomics. 2022;2022:9758532.
Wang T, Rostamza M, Song Z, Wang L, McNickle G, Iyer-Pascuzzi AS, Qiu Z, Jin J. SegRoot: A high throughput segmentation method for root image analysis. Comput Electron Agric. 2019;162:845–854.
Pierz LD, Heslinga DR, Buell CR, Haus MJ. An image-based technique for automated root disease severity assessment using PlantCV. Appl Plant Sci. 2023;11(1): Article e11507.
Gehan MA, Fahlgren N, Abbasi A, Berry JC, Callen ST, Chavez L, Doust AN, Feldman MJ, Gilbert KB, Hodge JG, et al. PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ. 2017;5: Article e4088.
Wang C, Sun S, Zhao C, Mao Z, Wu H, Teng G. A detection model for cucumber root-knot nematodes based on modified YOLOv5-CMS. Agronomy. 2022;12(10):2555.
Sell M, Smith AG, Burdun I, Rohula-Okunev G, Kupper P, Ostonen I. Assessing the fine root growth dynamics of Norway spruce manipulated by air humidity and soil nitrogen with deep learning segmentation of smartphone images. Plant Soil. 2022;480(1-2):135–150.
Griffiths M, Liu AE, Gunn SL, Mutan NM, Morales EY, Topp CN. A temporal analysis and response to nitrate availability of 3D root system architecture in diverse pennycress (Thlaspi arvense L.) accessions. Front Plant Sci. 2023;14: Article 1145389.
Pace J, Lee N, Naik HS, Ganapathysubramanian B, Lübberstedt T. Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (automatic root image analysis). PLOS ONE. 2014;9(9): Article e108255.
Bucksch A, Burridge J, York LM, das A, Nord E, Weitz JS, Lynch JP. Image-based high-throughput field phenotyping of crop roots. Plant Physiol. 2014;166(2):470–486.
Rellán-Álvarez R, Lobet G, Lindner H, Pradier PL, Sebastian J, Yee MC, Geng Y, Trontin C, LaRue T, Schrager-Lavelle A, et al. GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems. elife. 2015;4: Article e07597.
Arsenault J-L, Poulcur S, Messier C, Guay R. WinRHlZOTM, a root-measuring system with a unique overlap correction method. HortSci. 1995;30(4):906D–906D.
Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: A survey. Comput Electron Agric. 2018;147:70–90.
Paez-Garcia A, Motes C, Scheible WR, Chen R, Blancaflor E, Monteros M. Root traits and phenotyping strategies for plant improvement. Plants. 2015;4(2):334–355.
Weihs B, Bergstrom R, Ruffing C, McLauchlan K. Woody encroachment of a riparian corridor in a tallgrass prairie: Dendrochronological evidence from Kansas. Pap Appl Geogr. 2016;2(1):1–8.
York LM. Functional phenomics: An emerging field integrating high-throughput phenotyping, physiology, and bioinformatics. J Exp Bot. 2019;70(2):379–386.
Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. Plant phenomics, from sensors to knowledge. Curr Biol. 2017;27(15):R770–R783.
Lobet G, Pound MP, Diener J, Pradal C, Draye X, Godin C, Javaux M, Leitner D, Meunier F, Nacry P, et al. Root System Markup Language: Toward a unified root architecture description language. Plant Physiol. 2015;167(3):617–627.
Zobel RW, Waisel Y. A plant root system architectural taxonomy: A framework for root nomenclature. Plant Biosystems. 2010;144(2):507–512.
Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).