AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The State of the Art in Root System Architecture Image Analysis Using Artificial Intelligence: A Review

Brandon J. Weihs1,2Deborah-Jo Heuschele1,2Zhou Tang3Larry M. York4Zhiwu Zhang3Zhanyou Xu1( )
United States Department of Agriculture–Agricultural Research Service–Plant Science Research, St. Paul, MN 55108, USA
Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Show Author Information

Abstract

Roots are essential for acquiring water and nutrients to sustain and support plant growth and anchorage. However, they have been studied less than the aboveground traits in phenotyping and plant breeding until recent decades. In modern times, root properties such as morphology and root system architecture (RSA) have been recognized as increasingly important traits for creating more and higher quality food in the “Second Green Revolution”. To address the paucity in RSA and other root research, new technologies are being investigated to fill the increasing demand to improve plants via root traits and overcome currently stagnated genetic progress in stable yields. Artificial intelligence (AI) is now a cutting-edge technology proving to be highly successful in many applications, such as crop science and genetic research to improve crop traits. A burgeoning field in crop science is the application of AI to high-resolution imagery in analyses that aim to answer questions related to crops and to better and more speedily breed desired plant traits such as RSA into new cultivars. This review is a synopsis concerning the origins, applications, challenges, and future directions of RSA research regarding image analyses using AI.

References

1

Ameen A, Raza S. Green Revolution: A review. Int J Adv Sci Res. 2017;3: 129–137.

2

Lynch JP. Roots of the Second Green Revolution. Aust J Bot. 2007;55: 493–512.

3
Thorne CR. Effects of vegetation on riverbank erosion and stability. In: Thornes JB, editor. Vegetation and erosion. Chichester (England): Wiley; 1990. p. 125–144.
4
Pollen-Bankhead N, Simon ADF, Thomas RE, The reinforcement of soil by roots: Recent advances and directions for future research. In: Shroder JF, Butler DR, Hupp CR, editors. Treatise on geomorphology. San Diego (CA): Academic Press; 2013. p. 107–124.
5
Michaud R, Lehman WF, Rumbaugh MD. World distribution and historical development. In: Alfalfa and Alfalfa Improvement. Madison (WI): American Society of Agronomy Inc., Crop Science Society of America Inc., Soil Science Society of America Inc.; 1988. p. 25–91.
6

York LM, Nord EA, Lynch JP. Integration of root phenes for soil resource acquisition. Front Plant Sci. 2013;4:355.

7

Maqbool S, Hassan MA, Xia X, York LM, Rasheed A, He Z. Root system architecture in cereals: Progress, challenges and perspective. Plant J. 2022;110(1):23–42.

8

Kell DB. Breeding crop plants with deep roots: Their role in sustainable carbon, nutrient and water sequestration. Ann Bot. 2011;108(3):407–418.

9
Fernandez A, Sheaffer C, Tautges N, Putnam D, Hunter M. Alfalfa, wildlife, and the environment. Second edition. St. Paul (MN): National Alfalfa and Forage Alliance; 2019.
10

Bishopp A, Lynch JP. The hidden half of crop yields. Nat Plants. 2015;1:15117.

11

Lynch J. Root architecture and plant productivity. Plant Physiol. 1995;109(1):7–13.

12

Herder GD, van Isterdael G, Beeckman T, de Smet I. The roots of a new Green Revolution. Trends Plant Sci. 2010;15(11):600–607.

13

Voss-Fels KP, Snowdon RJ, Hickey LT. Designer roots for future crops. Trends Plant Sci. 2018;23(11):957–960.

14

Bucciarelli B, Xu Z, Ao S, Cao Y, Monteros MJ, Topp CN, Samac DA. Phenotyping seedlings for selection of root system architecture in alfalfa (Medicago sativa L.). Plant Methods. 2021;17(1):125.

15

Uga Y. Challenges to design-oriented breeding of root system architecture adapted to climate change. Breed Sci. 2021;71(1):3–12.

16

Falk KG, Jubery TZ, Mirnezami SV, Parmley KA, Sarkar S, Singh A, Ganapathysubramanian B, Singh AK. Computer vision and machine learning enabled soybean root phenotyping pipeline. Plant Methods. 2020;16:5.

17

Xu Z, York LM, Seethepalli A, Bucciarelli B, Cheng H, Samac DA. Objective phenotyping of root system architecture using image augmentation and machine learning in alfalfa (Medicago sativa L.). Plant Phenomics. 2022;2022:9879610.

18

McGrail RK, Van Sanford DA, McNear DH. Trait-based root phenotyping as a necessary tool for crop selection and improvement. Agronomy. 2020;10(9):1328.

19
Berry PM, Sterling M, Spink JH, Baker CJ, Sylvester-Bradley R, Mooney SJ, Tams AR, Ennos AR, Understanding and reducing lodging in cereals. In: Advances in agronomy. Cambridge (MA): Academic Press; 2004. p. 217–271.
20

York LM, Galindo-Castaneda T, Schussler JR, Lynch JP. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot. 2015;66(8):2347–2358.

21

Craine JM, Lee WG. Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia. 2003;134(4):471–478.

22

Tang Z, Parajuli A, Chen CJ, Hu Y, Revolinski S, Medina CA, Lin S, Zhang Z, Yu LX. Validation of UAV-based alfalfa biomass predictability using photogrammetry with fully automatic plot segmentation. Sci Rep. 2021;11(1):3336.

23

Trachsel S, Kaeppler SM, Brown KM, Lynch JP. Shovelomics: High throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil. 2011;341(1):75–87.

24

Burridge J, Jochua CN, Bucksch A, Lynch JP. Legume shovelomics: High-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crop Res. 2016;192:21–32.

25
Weaver JE. The ecological relations of roots. Washington (DC): Carnegie Institution of Washington; 1910.
26

Bak F, Lyhne-Kjærbye A, Tardif S, Dresbøll DB, Nybroe O, Nicolaisen MH. Deep-rooted plant species recruit distinct bacterial communities in the subsoil. Phytobiomes J. 2022;6(3):236–246.

27

Wasson AP, Nagel KA, Tracy S, Watt M. Beyond digging: Noninvasive root and rhizosphere phenotyping. Trends Plant Sci. 2020;25(1):119–120.

28

Johnson MG, Tingey DT, Phillips DL, Storm MJ. Advancing fine root research with minirhizotrons. Environ Exp Bot. 2001;45(3):263–289.

29

Zhang Z, Fan B, Song C, Zhang X, Zhao Q, Ye B. Advances in root system architecture: Functionality, plasticity, and research methods. J Resour Ecol. 2022;14(1):15–24.

30

Metzner R, Eggert A, van Dusschoten D, Pflugfelder D, Gerth S, Schurr U, Uhlmann N, Jahnke S. Direct comparison of MRI and x-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods. 2015;11(1):17.

31

Hainsworth JM, Alymore LAG. The use of computer-assisted tomography to determine spatial distribution of soil water content. Aust J Soil Res. 1983;21(4):435–443.

32

Tötzke C, Kardjilov N, Manke I, Oswald SE. Capturing 3D water flow in rooted soil by ultra-fast neutron tomography. Sci Rep. 2017;7(1):6192.

33

Jayapalan DFS, Ananth JP. Internet of things-based root disease classification in alfalfa plants using hybrid optimization-enabled deep convolutional neural network. Concurr Comput. 2023;35(3): Article e7504.

34

Lu Y, Wang Y, Chen Z, Khan A, Salvaggio C, Lu G. 3D plant root system reconstruction based on fusion of deep structure-from-motion and IMU. Multimed Tools Appl. 2021;80(11):17315–17331.

35

Huang Y, Yan J, Zhang Y, Ye W, Zhang C, Gao P, Lv X. Automatic segmentation of cotton roots in high-resolution minirhizotron images based on improved OCRNet. Front Plant Sci. 2023;14:1147034.

36
Douarre C, Douarre C, Schielein R, Frindel C, Gerth S, Rousseau D. Deep learning based root-soil segmentation from x-ray tomography images. bioRxiv. 2016;071662.
37

Narisetti N, Henke M, Seiler C, Junker A, Ostermann J, Altmann T, Gladilin E. Fully-automated root image analysis (faRIA). Sci Rep. 2021;11(1):16047.

38

Kinose R, Utsumi Y, Iwamura M, Kise K. Tiller estimation method using deep neural networks. Front Plant Sci. 2023;13:1016507.

39

Deng R, Jiang Y, Tao M, Huang X, Bangura K, Liu C, Lin J, Qi L. Deep learning-based automatic detection of productive tillers in rice. Comput Electron Agric. 2020;177: Article 105703.

40

Wang C, Li X, Caragea D, Bheemanahallia R, Jagadish SVK. Root anatomy based on root cross-section image analysis with deep learning. Comput Electron Agric. 2020;175: Article 105549.

41

Singh A, Ganapathysubramanian B, Singh AK, Sarkar S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016;21(2):110–124.

42

Atkinson JA, Pound MP, Bennett MJ, Wells DM. Uncovering the hidden half of plants using new advances in root phenotyping. Curr Opin Biotechnol. 2019;55:1–8.

43

Smith AG, Han E, Petersen J, Olsen NAF, Giese C, Athmann M, Dresbøll DB, Thorup-Kristensen K. Root painter: Deep learning segmentation of biological images with corrective annotation. New Phytol. 2022;236(2):774–791.

44

Seethepalli A, Dhakal K, Griffiths M, Guo H, Freschet GT, York LM. RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. AoB Plants. 2021;13(6):plab056.

45

Seethepalli A, Guo H, Liu X, Griffiths M, Almtarfi H, Li Z, Liu S, Zare A, Fritschi FB, Blancaflor EB, et al. RhizoVision Crown: An integrated hardware and software platform for root crown phenotyping. Plant Phenomics. 2020;2020:3074916.

46

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444.

47

LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–551.

48
Brownlee J. Deep learning for computer vision: Image classification, object detection, and face recognition in Python. Machine Learning Mastery; 2019.
49

Perez-Sanz F, Navarro PJ, Egea-Cortines M. Plant phenomics: An overview of image acquisition technologies and image data analysis algorithms. Gigascience. 2017;6(11):1–18.

50

Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Mark. 2021;31(3):685–695.

51

Khaki S, Wang L, Archontoulis SV. A CNN-RNN framework for crop yield prediction. Front Plant Sci. 2020;10:1750.

52

Dufaux F. Grand challenges in image processing. Front Signal Process. 2021;1:675547.

53

Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–2324.

54
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems - volume 1. Lake Tahoe (NV): Curran Associates Inc.; 2012. p. 1097–1105.
55

Xu M, Yoon S, Fuentes A, Park DS. A comprehensive survey of image augmentation techniques for deep learning. Pattern Recogn. 2023;137: Article 109347.

56

Srivastava N, Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(56):1929–1958.

57
Webb GI. Overfitting. In: Sammut C, Webb GI, editors. Encyclopedia of machine learning. Boston (MA): Springer; 2010. p. 744.
58
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the 2015 IEEE conference on computer vision and pattern recognition (CVPR). Boston (MA): IEEE; 2015. p. 3431–3440.
59
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–241.
60

Zhao J, Bodner G, Rewald B. Phenotyping: Using machine learning for improved pairwise genotype classification based on root traits. Front Plant Sci. 2016;7:1864.

61
Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Computer vision – ECCV 2018. Cham: Springer International Publishing; 2018. p. 833–851.
62
Yuan Y, Chen X, Wang J. Object-contextual representations for semantic segmentation. In: Computer vision – ECCV 2020. Cham: Springer International Publishing; 2020. p. 173–190.
63
Redmon J, Farhadi A. YOLO9000: Better, faster, stronger.Paper presented at: 2017 IEEE Conference on ComputerVision and Pattern Recognition (CVPR); 2017 Jul 21–26;Honolulu, HI, USA.
64
Bolya D, Zhou C, Xiao F, Lee YJ. YOLACT: Real-timeinstance segmentation. Paper presented at: 2019 IEEE/CVFInternational Conference on Computer Vision (ICCV); 2019Oct 27–Nov 02; Seoul, Korea (South).
65
Mattupalli C, Seethepalli A, York LM, Young CA. Digitalimaging to evaluate root system architectural changesassociated with soil biotic factors. BioRxiv. 2018. https://doi.org/10.1101/505321
66

Li F-F, Fergus R, Perona P. One-shot learning of object categories. IEEE Trans Pattern Anal Mach Intell. 2006;28(4):594–611.

67

Smith AG, Petersen J, Selvan R, Rasmussen CR. Segmentation of roots in soil with U-Net. Plant Methods. 2020;16(1):13.

68
Xu W, Yu G, Cui Y, Gloaguen R, Zare A, Bonnette J, Reyes-Cabrera J, Rajurkar A, Rowland D, Matamala R, et al. PRMI: A dataset of minirhizotron images for diverseplant root study. ArXiv: 2022. https://doi.org/10.48550/arXiv.2201.08002
69

Baykalov P, Bussmann B, Nair R, Smith AG, Bodner G, Hadar O, Lazarovitch N, Rewald B. Semantic segmentation of plant roots from RGB (mini-) rhizotron images—Generalisation potential and false positives of established methods and advanced deep-learning models. Plant Methods. 2023;19(1):122.

70

Wang X, Cao W. GACN: Generative adversarial classified network for balancing plant disease dataset and plant disease recognition. Sensors. 2023;23(15):6844.

71
Jackson PT, Atapour-Abarghouei A, Bonner S, Breckon T, Obara B. Style augmentation: data augmentation via stylerandomization. ArXiv. 2019. https://doi.org/10.48550/arXiv.1809.05375
72

Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Understanding deep learning (still) requires rethinking generalization. Commun ACM. 2021;64(3):107–115.

73

Seidenthal K, Panjvani K, Chandnani R, Kochian L, Eramian M. Iterative image segmentation of plant roots for high-throughput phenotyping. Sci Rep. 2022;12(1):16563.

74
Taylor L, Nitschke G. Improving Deep Learning withGeneric Data Augmentation. Paper presented at: 2018 IEEESymposium Series on Computational Intelligence (SSCI);2018 Nov 18–21; Bangalore, India.
75
Wong SC, Gatt A, Stamatescu V, Mc Donnell MD.Understanding data augmentation for classification: When towarp? ArXiv. 2016. https://doi.org/10.48550/arXiv.1609.08764
76
Ras G. Xie N, van Gerven M, Doran D. Explainable deeplearning: A field guide for the uninitiated. ArXiv. 2020.https://doi.org/10.48550/arXiv.2004.14545
77

Marcinkevičs R, Vogt JE. Interpretable and explainable machine learning: A methods-centric overview with concrete examples. Wires Data Min Knowl Discov. 2023;13(3): Article e1493.

78
Northcutt CG, Athalye A, Mueller J. Pervasive label errorsin test sets destabilize machine learning benchmarks. ArXiv.2021. https://doi.org/10.48550/arXiv.2103.14749
79

Northcutt C, Jiang L, Chuang I. Confident learning: Estimating uncertainty in dataset labels. J Artif Intell Res. 2021;70:1373–1411.

80

Akhtar N, Mian A. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access. 2018;6:14410–14430.

81
Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R. Intriguing properties of neuralnetworks. ArXiv. 2013. https://doi.org/10.48550/arXiv.1312.6199
82

Jäkel F, Singh M, Wichmann FA, Herzog MH. An overview of quantitative approaches in Gestalt perception. Vis Res. 2016;126:3–8.

83
Göpfert JP, Artelt A, Wersing H, Hammer B. Adversarial attacks hidden in plain sight. In: Advances in intelligent data analysis XVIII. Konstanz (Germany): Springer; 2020 p. 235–247.
84
Bai Y, Huang R, Viswanathan V, Kuo T-S, Wu T. Measuringadversarial datasets. ArXiv. 2023. https://doi.org/10.48550/arXiv.2311.03566
85

Zhong D, Novais J, Grift TE, Bohn M, Han J. Maize root complexity analysis using a support vector machine method. Comput Electron Agric. 2009;69(1):46–50.

86
Pound MP, Atkinson JA, Townsend AJ, Wilson MH, GriffithsM, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH, et al. Deep machine learning provides stateof-the-art performance in image-based plant phenotyping.BioRxiv. 2016. https://doi.org/10.1101/053033
87

Yasrab R, Atkinson JA, Wells DM, French AP, Pridmore TP, Pound MP. RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. Gigascience. 2019;8(11):giz123.

88

Yu G, Zare A, Sheng H, Matamala R, Reyes-Cabrera J, Fritschi FB, Juenger TE. Root identification in minirhizotron imagery with multiple instance learning. Mach Vis Appl. 2020;31(6):43.

89

Shen C, Liu L, Zhu L, Kang J, Wang N, Shao L. High-throughput in situ root image segmentation based on the improved DeepLabv3+ method. Front Plant Sci. 2020;11:576791.

90
Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H.Encoder-decoder with atrous separable convolution forsemantic image segmentation. ArXiv. 2018. https://doi.org/10.48550/arXiv.1802.02611
91

Kang J, Liu L, Zhang F, Shen C, Wang N, Shao L. Semantic segmentation model of cotton roots in-situ image based on attention mechanism. Comput Electron Agric. 2021;189: Article 106370.

92
Möller B, Schreck B, Posch S. Analysis of Arabidopsis root images — Studies on CNNs and skeleton-based root topology. Paper presented at: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW); 2021 Oct 11–17; Montreal, BC, Canada.
93

Lube V, Noyan MA, Przybysz A, Salama K, Blilou I. MultipleXLab: A high-throughput portable live-imaging root phenotyping platform using deep learning and computer vision. Plant Methods. 2022;18(1):38.

94

Bauer FM, Lärm L, Morandage S, Lobet G, Vanderborght J, Vereecken H, Schnepf A. Development and validation of a deep learning based automated minirhizotron image analysis pipeline. Plant phenomics. 2022;2022:9758532.

95
Li L, Verma M, Nakashima Y, Nagahara H, Kawasaki R.IterNet: Retinal image segmentation utilizing structuralredundancy in vessel networks. Paper presented at: 2020IEEE Winter Conference on Applications of ComputerVision (WACV); 2020 Mar 01–05; Snowmass, CO, USA.
96

Wang T, Rostamza M, Song Z, Wang L, McNickle G, Iyer-Pascuzzi AS, Qiu Z, Jin J. SegRoot: A high throughput segmentation method for root image analysis. Comput Electron Agric. 2019;162:845–854.

97

Pierz LD, Heslinga DR, Buell CR, Haus MJ. An image-based technique for automated root disease severity assessment using PlantCV. Appl Plant Sci. 2023;11(1): Article e11507.

98

Gehan MA, Fahlgren N, Abbasi A, Berry JC, Callen ST, Chavez L, Doust AN, Feldman MJ, Gilbert KB, Hodge JG, et al. PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ. 2017;5: Article e4088.

99

Wang C, Sun S, Zhao C, Mao Z, Wu H, Teng G. A detection model for cucumber root-knot nematodes based on modified YOLOv5-CMS. Agronomy. 2022;12(10):2555.

100

Sell M, Smith AG, Burdun I, Rohula-Okunev G, Kupper P, Ostonen I. Assessing the fine root growth dynamics of Norway spruce manipulated by air humidity and soil nitrogen with deep learning segmentation of smartphone images. Plant Soil. 2022;480(1-2):135–150.

101

Griffiths M, Liu AE, Gunn SL, Mutan NM, Morales EY, Topp CN. A temporal analysis and response to nitrate availability of 3D root system architecture in diverse pennycress (Thlaspi arvense L.) accessions. Front Plant Sci. 2023;14: Article 1145389.

102

Pace J, Lee N, Naik HS, Ganapathysubramanian B, Lübberstedt T. Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (automatic root image analysis). PLOS ONE. 2014;9(9): Article e108255.

103

Bucksch A, Burridge J, York LM, das A, Nord E, Weitz JS, Lynch JP. Image-based high-throughput field phenotyping of crop roots. Plant Physiol. 2014;166(2):470–486.

104

Rellán-Álvarez R, Lobet G, Lindner H, Pradier PL, Sebastian J, Yee MC, Geng Y, Trontin C, LaRue T, Schrager-Lavelle A, et al. GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems. elife. 2015;4: Article e07597.

105

Arsenault J-L, Poulcur S, Messier C, Guay R. WinRHlZOTM, a root-measuring system with a unique overlap correction method. HortSci. 1995;30(4):906D–906D.

106

Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: A survey. Comput Electron Agric. 2018;147:70–90.

107

Paez-Garcia A, Motes C, Scheible WR, Chen R, Blancaflor E, Monteros M. Root traits and phenotyping strategies for plant improvement. Plants. 2015;4(2):334–355.

108

Weihs B, Bergstrom R, Ruffing C, McLauchlan K. Woody encroachment of a riparian corridor in a tallgrass prairie: Dendrochronological evidence from Kansas. Pap Appl Geogr. 2016;2(1):1–8.

109

York LM. Functional phenomics: An emerging field integrating high-throughput phenotyping, physiology, and bioinformatics. J Exp Bot. 2019;70(2):379–386.

110

Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. Plant phenomics, from sensors to knowledge. Curr Biol. 2017;27(15):R770–R783.

111

Lobet G, Pound MP, Diener J, Pradal C, Draye X, Godin C, Javaux M, Leitner D, Meunier F, Nacry P, et al. Root System Markup Language: Toward a unified root architecture description language. Plant Physiol. 2015;167(3):617–627.

112

Zobel RW, Waisel Y. A plant root system architectural taxonomy: A framework for root nomenclature. Plant Biosystems. 2010;144(2):507–512.

Plant Phenomics
Article number: 0178
Cite this article:
Weihs BJ, Heuschele D-J, Tang Z, et al. The State of the Art in Root System Architecture Image Analysis Using Artificial Intelligence: A Review. Plant Phenomics, 2024, 6: 0178. https://doi.org/10.34133/plantphenomics.0178

314

Views

7

Crossref

5

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 23 September 2023
Accepted: 27 March 2024
Published: 18 April 2024
© 2024 Brandon J. Weihs et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return