AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Improved Transformer for Time Series Senescence Root Recognition

Hui Tang1,Xue Cheng1,Qiushi Yu1JiaXi Zhang1Nan Wang1,2( )Liantao Liu3( )
College of Mechanical and Electrical Engineering, Hebei Agricultural University, 071000 Baoding, China
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 071000 Baoding, China
College of Agronomy, Hebei Agricultural University, 071000 Baoding, China

†These author contributed equally to this work.

Show Author Information

Abstract

The root is an important organ for plants to obtain nutrients and water, and its phenotypic characteristics are closely related to its functions. Deep-learning-based high-throughput in situ root senescence feature extraction has not yet been published. In light of this, this paper suggests a technique based on the transformer neural network for retrieving cotton’s in situ root senescence properties. High-resolution in situ root pictures with various levels of senescence are the main subject of the investigation. By comparing the semantic segmentation of the root system by general convolutional neural networks and transformer neural networks, SegFormer-UN (large) achieves the optimal evaluation metrics with mIoU, mRecall, mPrecision, and mF1 metric values of 81.52%, 86.87%, 90.98%, and 88.81%, respectively. The segmentation results indicate more accurate predictions at the connections of root systems in the segmented images. In contrast to 2 algorithms for cotton root senescence extraction based on deep learning and image processing, the in situ root senescence recognition algorithm using the SegFormer-UN model has a parameter count of 5.81 million and operates at a fast speed, approximately 4 min per image. It can accurately identify senescence roots in the image. We propose that the SegFormer-UN model can rapidly and nondestructively identify senescence root in in situ root images, providing important methodological support for efficient crop senescence research.

References

1

Li A, Zhu L, Xu W, Liu L, Teng G. Recent advances in methods for in situ root phenotyping. PeerJ. 2022;10:Article e13638.

2

Dong H, Niu Y, Li W, Zhang D. Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J Exp Bot. 2008;59(6):1295–1304.

3

Kunkle JM, Walters MB, Kobe RK. Senescence-related changes in nitrogen in fine roots: Mass loss affects estimation. Tree Physiol. 2009;29(5):715–723.

4

Chen Y, Dong H. Mechanisms and regulation of senescence and maturity performance in cotton. Field Crop Res. 2016;189:1–9.

5

FengShan L, ZhiBin Z, ShunJun H, HaiYan D, XiuLong C. Influence of different soil coring methods on estimation of root distribution characteristics. Acta Pratacul Sin. 2012;21:294–299.

6

Luyang F. Comparative analysis of double ring method and single ring soil column method in measuring soil infiltration on loess surface. Soil and Water Conservation in China. 2020;47–50+5. https://doi.org/10.14123/j.cnki.swcc.2020.0193

7

Yang Y, Yang X, Wu Y, Huang Y, Xu L, Fu J, Guo F, Zhou S, He D. Discussion on improving precision of wheat root research by cube sampling method. J Agric Sci. 2021;50(11):36–46.

8

Li L, Li CN, Mao XG, Wang JY. Advances and perspectives of approaches to phenotyping crop root system. Sci Agric Sin. 2022;55:425–437.

9

Jie H, Austin PT, Lee SK. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants. J Exp Bot. 2010;61(14):3959–3969.

10

Marié CL, Kirchgessner N, Flütsch P, Pfeifer J, Hund A. RADIX: Rhizoslide platform allowing high throughput digital image analysis of root system expansion. Plant Methods. 2016;12(1):40.

11

Piñeros MA, Larson BG, Shaff JE, Schneider DJ, Falcão AX, Yuan L, Clark RT, Craft EJ, Davis TW, Pradier P-L, et al. Evolving Technologies for growing, imaging and analyzing 3D root system architecture of crop plants: Digital phenotyping of root system architecture. J Integr Plant Biol. 2016;58(3):230–241.

12

Wu J, Wu Q, Pagès L, Yuan Y, Zhang X, Du M, Tian X, Li Z. RhizoChamber-monitor: A robotic platform and software enabling characterization of root growth. Plant Methods. 2018;14:44.

13

Parker CJ, Carr MKV, Jarvis NJ, Puplampu BO, Lee VH. An evaluation of the minirhizotron technique for estimating root distribution in potatoes. J Agric Sci. 1991;116(3):341–350.

14

Taylor BN, Beidler KV, Strand AE, Pritchard SG. Improved scaling of minirhizotron data using an empirically-derived depth of field and correcting for the underestimation of root diameters. Plant Soil. 2014;374:941–948.

15

Scotson CP, Duncan SJ, Williams KA, Ruiz SA, Roose T. X-ray computed tomography imaging of solute movement through ridged and flat plant systems. Eur J Soil Sci. 2021;72(1):198–214.

16

Bagnall GC, Koonjoo N, Altobelli SA, Conradi MS, Fukushima E, Kuethe DO, Mullet JE, Neely H, Rooney WL, Stupic KF, et al. Low-field magnetic resonance imaging of roots in intact clayey and silty soils. Geoderma. 2020;370:Article 114356.

17

Zhang X, Derival M, Albrecht U, Ampatzidis Y. Evaluation of a ground penetrating radar to map the root architecture of HLB-infected citrus trees. Agronomy. 2019;9:354.

18

Schierholt A, Tietz T, Bienert GP, Gertz A, Miersch S, Becker HC. Root system size response of bzh semi-dwarf oilseed rape hybrids to different nitrogen levels in the field. Ann Bot. 2019;124(6):891–901.

19

Mohamed A, Monnier Y, Mao Z, Lobet G, Maeght J-L, Ramel M, Stokes A. An evaluation of inexpensive methods for root image acquisition when using rhizotrons. Plant Methods. 2017;13:11.

20

Nahar K, Pan WL. High resolution in situ rhizosphere imaging of root growth dynamics in oilseed castor plant (Ricinus Communis L.) using digital scanners. Model Earth Syst Environ. 2019;5:781–792.

21

Xiao S, Liu L, Zhang Y, Sun H, Zhang K, Bai Z, Dong H, Li C. Fine root and root hair morphology of cotton under drought stress revealed with RhizoPot. J Agro Crop Sci. 2020;206(6):679–693.

22

Zhao H, Wang N, Sun H, Zhu L, Zhang K, Zhang Y, Zhu J, Li A, Bai Z, Liu X, et al. RhizoPot platform: A high-throughput in situ root phenotyping platform with integrated hardware and software. Front Plant Sci. 2022;13:1004904.

23

Le Bot J, Serra V, Fabre J, Draye X, Adamowicz S, Pagès L. DART: A software to analyse root system architecture and development from captured images. Plant Soil. 2010;326:261–273.

24

Betegón-Putze I, González A, Sevillano X, Blasco-Escámez D, Caño-Delgado AI. My ROOT: A method and software for the semiautomatic measurement of primary root length in Arabidopsis seedlings. Plant J. 2019;98(6):1145–1156.

25

Pound MP, French AP, Atkinson JA, Wells DM, Bennett MJ, Pridmore T. RootNav: Navigating images of complex root architectures. Plant Physiol. 2013;162(4):1802–1814.

26

Wang Z, Yao L, Fangqiang Z. Application of image semantic segmentation in smart agriculture. Inf Comput. 2022;34:32–34+49.

27
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). Boston (MA): IEEE; 2015. p. 3431–3440.
28

Kamal S, Shende VG, Swaroopa K, Bindhu Madhavi P, Akram PS, Pant K, Patil SD, Sahile K. FCN network-based weed and crop segmentation for IoT-aided agriculture applications. Wirel Commun Mob Comput. 2022;2022:Article 2770706.

29
Badrinarayanan V, Kendall A. Cipolla R. A deep convolutional encoder-decoder architecture for image segmentation. ArXiv. 2016. https://doi.org/10.48550/arXiv.1511.00561
30

Wang T, Rostamza M, Song Z, Wang L, McNickle G, Iyer-Pascuzzi AS, Qiu Z, Jin J. SegRoot: A high throughput segmentation method for root image analysis. Comput Electron Agric. 2019;162:845–854.

31
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer; 2015. p. 234–241.
32

Gaggion N, Ariel F, Daric V, Lambert É, Legendre S, Roulé T, Camoirano A, Milone DH, Crespi M, Blein T, et al. ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture. Gigascience. 2021;10(7):Article giab052.

33

Smith AG, Han E, Petersen J, Olsen NAF, Giese C, Athmann M, Dresbøll DB, Thorup-Kristensen K. RootPainter: Deep learning segmentation of biological images with corrective annotation. Plant Biol. 2022;236(2):774–791.

34

Peters B, Blume-Werry G, Gillert A, Schwieger S, von Lukas U.F., Kreyling J. As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: The convolutional neural network “RootDetector”. Sci Rep. 2023;13(1):1399.

35
Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). Honolulu (HI): IEEE; 2017. p. 6230–6239.
36

Zhang R, Chen J, Feng L, Li S, Yang W, Guo D. A refined pyramid scene parsing network for polarimetric SAR image semantic segmentation in agricultural areas. IEEE Geosci. Remote Sensing Lett. 2022;19:Article 4014805.

37
Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Computer vision – ECCV 2018. Cham: Springer; 2018. p. 833–851.
38

Shen C, Liu L, Zhu L, Kang J, Wang N, Shao L. High-throughput in situ root image segmentation based on the improved DeepLabv3+ method. Front Plant Sci. 2020;11:Article 576791.

39

Kang J, Liu L, Zhang F, Shen C, Wang N, Shao L. Semantic segmentation model of cotton roots in-situ image based on attention mechanism. Comput Electron Agric. 2021;189:Article 106370.

40

Zhong G, Ling X, Wang L. From shallow feature learning to deep learning: Benefits from the width and depth of deep architectures. Wiley Interdiscip Rev: Data Min Knowl Discov. 2019;9(1):Article e1255.

41

Salas J, De Barros Vidal F, Martinez-Trinidad F. Deep learning: Current state. IEEE Latin Am Trans. 2019;17(12):1925–1945.

42

Li Y, Huang Y, Wang M, Zhao Y. An improved U-net-based in situ root system phenotype segmentation method for plants. Front Plant Sci. 2023;14:1115713.

43

Lu W, Wang X, Jia W. Root hair image processing based on deep learning and prior knowledge. Comput Electron Agric. 2022;202:Article 107397.

44
Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). Doha (Qatar): Association for Computational Linguistics; 2014. p. 1724–1734.
45
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. Paper presented at: NIPS 2017. 31st Conference on Neural Information Processing Systems; 2017; Long Beach, CA, USA.
46
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, et al. An image Is worth 16x16 words: Transformers for image recognition at scale. ArXiv. 2021. https://doi.org/10.48550/arXiv.2010.11929
47

Alshammari H, Gasmi K, Ben Ltaifa I, Krichen M, Ben Ammar L, Mahmood MA. Olive disease classification based on vision transformer and CNN models. Comput Intell Neurosci. 2022;2022:Article 3998193.

48

Chen J, Luo T, Wu J, Wang Z, Zhang H. A vision transformer network SeedViT for classification of maize seeds. J Food Process Engineering. 2022;45(5):Article e13998.

49
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. Swin transformer: Hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF international conference on computer vision (ICCV). Montreal (QC): IEEE; 2021. p. 9992–10002.
50

Lu J, Wang W, Zhao K, Wang H. Recognition and segmentation of individual pigs based on Swin transformer. Anim Genet. 2022;53(6):794–802.

51

Meng X, Yang Y, Wang L, Wang T, Li R, Zhang C. Class-guided Swin transformer for semantic segmentation of remote sensing imagery. IEEE Geosci Remote Sensing Lett. 2022;19:Article 6517505.

52

Agilandeeswari L, Meena SD. SWIN transformer based contrastive self-supervised learning for animal detection and classification. Multimed Tools Appl. 2023;82:10445–10470.

53

Wang Y, Zhang S, Dai B, Yang S, Song H. Fine-grained weed recognition using Swin transformer and two-stage transfer learning. Front Plant Sci. 2023;14:1134932.

54

Wang Z, Zhang Z, Lu Y, Luo R, Niu Y, Yang X, Jing S, Ruan C, Zheng Y, Jia W. SE-COTR: A novel fruit segmentation model for green apples application in complex orchard. Plant Phenomics. 2022;2022:0005.

55

Großkinsky DK, Syaifullah SJ, Roitsch T. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J Exp Bot. 2018;69(4):825–844.

56

Neilson EH, Edwards AM, Blomstedt CK, Berger B, Møller BL, Gleadow RM. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J Exp Bot. 2015;66(7):1817–1832.

57

Cai J, Okamoto M, Atieno J, Sutton T, Li Y, Miklavcic SJ. Quantifying the onset and progression of plant senescence by color image analysis for high throughput applications. PLOS ONE. 2016;11(6):Article e0157102.

58

Hendrick RL, Pregitzer KS. The demography of fine roots in a northern hardwood Forest. Ecology. 1992;73(3):1094–1104.

59

Zhu L, Liu L, Sun H, Zhang Y, Liu X, Wang N, Chen J, Zhang K, Bai Z, Wang G, et al. The responses of lateral roots and root hairs to nitrogen stress in cotton based on daily root measurements. J Agron Crop Sci. 2022;208(1):89–105.

60

Zhu L, Liu L, Sun H, Zhang K, Zhang Y, Li A, Bai Z, Wang G, Liu X, Dong H, et al. Low nitrogen supply inhibits root growth but prolongs lateral root lifespan in cotton. Ind Crop Prod. 2022;189:Article 115733.

61
Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P. Simple and efficient design for semantic segmentation with transformers. ArXiv. 2021. https://doi.org/10.48550/arXiv.2105.15203
62
Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M. Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Computer Vision – ECCV 2022 Workshops. Cham: Springer; 2021. p. 205–218.
63
Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille AL, Zhou Y. TransUNet: Transformers make strong encoders for medical image segmentation. ArXiv. 2021. https://doi.org/10.48550/arXiv.2102.04306
64
Zheng S, Lu J, Zhao H, Zhu X, Luo Z, Wang Y, Fu Y, Feng J, Xiang T, Torr PHS, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR). Nashville (TN): IEEE; 2021. p. 6877–6886.
65
Ruan Z, Huang Y, Wang M, Shi Q, Zhang J. Highlight removal method of tomato surface based on image processing. China Cucurbits and Vegetables. 2023;36:64–70. https://doi.org/10.16861/j.cnki.zggc.2023.0066.
66

Burgos-Artizzu XP, Ribeiro A, Tellaeche A, Pajares G, Fernández-Quintanilla C. Analysis of natural images processing for the extraction of agricultural elements. Image Vis Comput. 2010;28(1):138–149.

67

Yang Z, Leng L, Kim B-G. StoolNet for color classification of stool medical images. Electronics. 2019;8(12):1464.

68

Liu Y, Qian J, Yang X, Di B, Zhou J. Study on measurement method for apple root morphological parameters based on Labview. Plant Methods. 2019;15:149.

69

Zhu L, Liu L, Sun H, Zhang Y, Zhu J, Zhang K, Li A, Bai Z, Wang G, Li C. Physiological and comparative transcriptomic analysis provide insight into cotton (Gossypium hirsutum L.) root senescence in response. Front Plant Sci. 2021;12:Article 748715.

Plant Phenomics
Article number: 0159
Cite this article:
Tang H, Cheng X, Yu Q, et al. Improved Transformer for Time Series Senescence Root Recognition. Plant Phenomics, 2024, 6: 0159. https://doi.org/10.34133/plantphenomics.0159

212

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 07 September 2023
Accepted: 24 February 2024
Published: 15 April 2024
© 2024 Hui Tang et al Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return