AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Mitigating Illumination-, Leaf-, and View-Angle Dependencies in Hyperspectral Imaging Using Polarimetry

Daniel Krafft1,2,( )Clifton G. Scarboro1,2William Hsieh1Colleen Doherty2,3,Peter Balint-Kurti4,5Michael Kudenov1,2
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA
Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
Department of Entomology and Plant Pathology, North Carolina State University, Box 7616, Raleigh, NC 27695, USA
Plant Science Research Unit, USDA-ARS, Raleigh, NC 27695, USA

†These authors contributed equally to this work.

Show Author Information

Abstract

Automation of plant phenotyping using data from high-dimensional imaging sensors is on the forefront of agricultural research for its potential to improve seasonal yield by monitoring crop health and accelerating breeding programs. A common challenge when capturing images in the field relates to the spectral reflection of sunlight (glare) from crop leaves that, at certain solar incidences and sensor viewing angles, presents unwanted signals. The research presented here involves the convergence of 2 parallel projects to develop a facile algorithm that can use polarization data to decouple light reflected from the surface of the leaves and light scattered from the leaf’s tissue.

The first project is a mast-mounted hyperspectral imaging polarimeter (HIP) that can image a maize field across multiple diurnal cycles throughout a growing season. The second project is a multistatic fiber-based Mueller matrix bidirectional reflectance distribution function (mmBRDF) instrument which measures the polarized light-scattering behavior of individual maize leaves. The mmBRDF data was fitted to an existing model, which outputs parameters that were used to run simulations. The simulated data were then used to train a shallow neural network which works by comparing unpolarized 2-band vegetation index (Ⅵ) with linearly polarized data from the low-reflectivity bands of the Ⅵ. Using GNDVI and red-edge reflection ratio we saw an improvement of an order of magnitude or more in the mean error (ϵ) and a reduction spanning 1.5 to 2.7 in their standard deviation (ϵσ) after applying the correction network on the HIP sensor data.

References

1

Qiu R, Weng S, Zhang M, Li H, Sun H, Liu G, Li M. Sensors for measuring plant phenotyping: A review. Int J Agric Biol Eng. 2018;11(1):1–17.

2

Jin X, Zarco-Tejada PJ, Schmidhalter U, Reynolds MP, Hawkesford MJ, Varshney RK, Yang T, Nie C, Li Z, Ming B, et al. High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Trans Geosci. 2021;9(1):200–231.

3

Signoroni A, Conte M, Plutino A, Rizzi A. Spatial-spectral evidence of glare influence on hyperspectral acquisitions. Sensors. 2020;20(16):4374.

4

Bai G, Ge Y, Leavitt B, Gamon JA, Scoby D. Goniometer in the air: Enabling BRDF measurement of crop canopies using a cable-suspended plant phenotyping platform. Biosyst Eng. 2023;230(6):344–360.

5

Cheng J, Wen J, Xiao Q, Hao D, Lin X, Liu Q. Exploring the applicability of the semi-empirical brdf models at different scales using airborne multi-angular observations. IEEE Geosci Remote Sens Lett. 2022;19:2502905.

6

Jia W, Pang Y. Tree species classification in an extensive forest area using airborne hyperspectral data under varying light conditions. J For Res. 2023;34(3):1359.

7

Verhoef W, Bach H. Coupled soil-eaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens Environ. 2007;109(2):166–186.

8

Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, François C, Ustin SL. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sens Environ. 2009;113:S56.

9

Zhang L, Jin J, Wang L, Rehman TU, Gee MT Jr. Elimination of leaf angle impacts on plant reflectance spectra using fusion of hyperspectral images and 3d point clouds. Sensors. 2022;23(1):44.

10

Hilker T, Coops NC, Hall FG, Black TA, Wulder MA, Nesic Z, Krishnan P. Separating physiologically and directionally induced changes in PRI using BRDF models. Remote Sens Environ. 2008;112(6):2777.

11

Kupinski M, Bradley C, Diner D, Xu F, Chipman R. Estimating surface orientation from microfacet mueller matrix bidirectional reflectance distribution function models in outdoor passive imaging polarimetry. Opt Eng. 2019;58(8):Article 082416.

12
Thilak V, Voelz DG, Creusere C, Damarla S. Estimating the refractive index and reflected zenith angle of a target using multiple polarization measurements, 2006, p. 62404.
13

Peters RD, Noble SD. Characterization of leaf surface phenotypes based on light interaction. Plant Methods. 2023;19(1):26.

14
Vanderbilt VC, Grant L, Ustin SL. Polarization of light by vegetation. In: Myneni RB, Ross J, editors. Photon- vegetation interactions. Berlin Heidelberg (Germany): Springer; 1991. p. 191–228.
15
Vanderbilt V, Daughtry C, Dahlgren R. Remotely sensing the photochemical reflectance index, PRI. vol. 9613, 2015, 96130Z–96130Z–6.
16

Rodriguez C, Garcia-Caurel E, Garnatje T, Ribas MSI, Luque J, Campos J, Lizana A. Polarimetric observables for the enhanced visualization of plant diseases. Sci Rep. 2022;12(1):14743.

17

Scarboro CG, Doherty CJ, Balint-Kurti PJ, Kudenov MW. Multistatic fiber-based system for measuring the Mueller matrix bidirectional reflectance distribution function. Appl Opt. 2022;61(33):9832.

18

Kudenov MW, Lowenstern ME, Craven JM, LaCasse CF. Field deployable pushbroom hyperspectral imaging polarimeter. Opt Eng. 2017;56(1):Article 103107.

19

Tyo S, Goldstein DL, Chenault DB, Shaw JA. Review of passive imaging polarimetry for remote sensing applications. Appl Opt. 2006;45(22):5453–5469.

20

Luo DA, Barraza ET, Kudenov MW. Aircraft skin defect localization using imaging polarimetry. Opt Eng. 2018;57(8):1.

21
Alenin A, Tyo JS. Task-specific snapshot mueller matrix channeled spectropolarimeter 594 optimization (2012), p. 836403.
22
Alenin AS, Tyo JS. Proc. SPIE vol. 9613: Polarization Science and Remote Sensing Ⅶ. In: Shaw JA, LeMaster D, editorsChanneled partial mueller matrix polarimetry; 2015. p. 96130M.
23

Patty CHL, Luo DA, Snik F, Ariese F, Buma WJ, ten Kate IL, van Spanning RJM, Sparks WB, Germer TA, Garab G, et al. Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry. Biochim Biophys Acta Gen Subj. 2018;1862(6):1350.

24

Kudenov MW, Krafft D, Scarboro CG, Doherty CJ, Balint-Kurti P. Hybrid spatial-temporal Mueller matrix imaging spectropolarimeter for high throughput plant phenotyping. Appl Opt. 2023;62(8):2078.

25
Bass M. In: M. Bass, editor. Handbook of3rd ed. vol. 1. New York (NY): McGraw Hill; 2009. p. 15.1–15.41.
26

Arteaga O, Freudenthal J, Wang B, Kahr B. Mueller matrix polarimetry with four photoelastic modulators: Theory and calibration. Appl Opt. 2012;51(28):6805.

27

Gottlieb D, Arteaga O. Mueller matrix imaging with a polarization camera: Application to microscopy. Opt Express. 2021;29(21):34723.

28

Savenkov SN, Muttiah RS, Oberemok YA. Transmitted and reflected scattering matrices from an English oak leaf. Appl Opt. 2003;42(24):4955.

29

Ignatenko DN, Shkirin AV, Lobachevsky YP, Gudkov SV. Applications of Mueller matrix polarimetry to biological and agricultural diagnostics: A review. Appl Sci. 2022;12(10):5258.

30

Van Eeckhout A, Garcia-Caurel E, Garnatje T, Escalera JC, Durfort M, Vidal J, Gil JJ, Campos J, Lizana A. Polarimetric imaging microscopy for advanced inspection of vegetal tissues. Sci Rep. 2021;11(1):3913.

31

Eeckhout AV, Garcia-Caurel E, Garnatje T, Durfort M, Escalera JC, Vidal J, Gil JJ, Campos J, Lizana A. Depolarizing metrics for plant samples imaging. PLoS One. 2019;14(3):e0213909.

32
Chipman RA, Lam W-ST, Young G. Polarized light and optical systems. 1st ed. Boca Raton (FL): CRC Press; 2018.
33

Goldstein DH. Polarized light. Boca Raton (FL): CRC Press; 2011.

34

Diner DJ, Xu F, Martonchik J, Rheingans B, Geier S, Jovanovic V, Davis A, Chipman R, McClain S. Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle SpectroPolarimetric imager. Atmos. 2012;3(4):591.

35

Sandmeier SR, Strahler AH. BRDF laboratory measurements. Remote Sens Rev. 2000;18(2):481.

36
Germer T. SCATMECH: Polarized Light Scattering C++ Class Library.
37

Palmer JM, Grant BG. The art of radiometry. Bellingham (WA): SPIE Press; 2010.

38

Germer T. Full four-dimensional and reciprocal Mueller matrix bidirectional reflectance distribution function of sintered polytetrafluoroethylene. Appl Opt. 2017;56(33):9333–9340.

39

Bannari A, Morin D, Bonn F, Huete AR. A review of vegetation indices. Remote Sens. 1995;13(1):95–120.

40

Liebisch F, Kirchgessner N, Schneider D, Walter A, Hund A. Remote aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods. 2015;11:9.

41

Tyo JS, LaCasse CF, Ratliff BM. Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters. Opt Lett. 2009;34(20):3187–3189.

42

Hagen N, Kudenov MW. Review of snapshot spectral imaging technologies. Opt Eng. 2013;52(9):Article 090901.

43

Ratliff BM, Sargent GC. Alternative linear microgrid polarimeters: Design, analysis, and demosaicing considerations. Appl Opt. 2021;60(20):5805–5818.

44
Keller CU, Navarro R, Brandl BR. Detector Flat Fielding (SPIE). p. 35–36.
45

Kudenov M, Pezzaniti JL, Dereniak EL, Gerhart G. Microbolometer-infrared imaging stokes polarimeter. Opt Eng. 2009;48:6.

46

Wenhan Q, Yueqin X. On the hotspot effect of leaf canopies: Modeling study and influence of leaf shape. Remote Sens Environ. 1994;50(2):95.

Plant Phenomics
Article number: 0157
Cite this article:
Krafft D, Scarboro CG, Hsieh W, et al. Mitigating Illumination-, Leaf-, and View-Angle Dependencies in Hyperspectral Imaging Using Polarimetry. Plant Phenomics, 2024, 6: 0157. https://doi.org/10.34133/plantphenomics.0157

180

Views

1

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 03 October 2023
Accepted: 18 February 2024
Published: 22 March 2023
© 2024 Daniel Krafft et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return