AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Combinatorial Maps, a New Framework to Model Agroforestry Systems

Laëtitia Lemiere1,2,3( )Marc Jaeger2,3Marie Gosme1Gérard Subsol4
ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
CIRAD, UMR AMAP, F-34398 Montpellier, France
AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
Research-Team ICAR, LIRMM, Univ Montpellier, CNRS, Montpellier, France
Show Author Information

Abstract

Agroforestry systems are complex due to the diverse interactions between their elements, and they develop over several decades. Existing numerical models focus either on the structure or on the functions of agroforestry systems. However, both of these aspects are necessary, as function influences structure and vice versa. Here, we present a representation of agroforestry systems based on combinatorial maps (which are a type of multidimensional graphs), that allows conceptualizing the structure–function relationship at the agroecosystem scale. We show that such a model can represent the structure of agroforestry systems at multiple scales and its evolution through time. We propose an implementation of this framework, coded in Python, which is available on GitHub. In the future, this framework could be coupled with knowledge based or with biophysical simulation models to predict the production of ecosystem services. The code can also be integrated into visualization tools. Combinatorial maps seem promising to provide a unifying and generic description of agroforestry systems, including their structure, functions, and dynamics, with the possibility to translate to and from other representations.

References

1
Dupraz C, Liagre F. Agroforesterie: des arbres et des cultures, 2e éd. in Agriproduction, Paris (France): Groupe France Agricole éd; 2011.
2

Udawatta RP, Gantzer CJ. Soil and water ecosystem services of agroforestry. J Soil Water Conserv. 2022;77(1):5A–11A.

3
Nair PKR. An introduction to agroforestry. Dordrecht (Netherlands) : Kluwer Academic Publishers, in cooperation with International Centre for Research in Agroforestry; 1993.
4

Tzuk O, Uecker H, Meron E. The role of spatial self-organization in the design of agroforestry systems. PLoS One. 2020;15(7):Article e0236325.

5

Oury B. Allowing for weather in crop production model building. J Farm Econ. 1965;47(2):270–283.

6
Brouwer R, de Wit CT. A simulation model of plant growth with special attention to root growth and its consequences. 1968 [accessed 17 Feb 2023].
7

Sinclair TR, Seligman NG. Crop modeling: From infancy to maturity. Agron J. 1996;88(5):698–704.

8

Meyer N, Bergez J-E, Justes E, Constantin J. Influence of cover crop on water and nitrogen balances and cash crop yield in a temperate climate: A modelling approach using the STICS soil-crop model. Eur J Agron. 2022;132:Article 126416.

9

Boote KJ, Jones JW, Pickering NB. Potential uses and limitations of crop models. Agron J. 1996;88(5):704–716.

10

Gaudio N, Escobar-Gutiérrez AJ, Casadebaig P, Evers JB, Gérard F, Louarn G, Colbach N, Munz S, Launay M, Marrou H, et al. Current knowledge and future research opportunities for modeling annual crop mixtures. A review. Agron Sustain Dev. 2019;39(2):20.

11

Perttunen J, Sievänen R, Nikinmaa E. LIGNUM: A model combining the structure and the functioning of trees. Ecol Model. 1998;108(1–3):189–198.

12

Fourcaud T, Zhang X, Stokes A, Lambers H, Korner C. Plant growth modelling and applications: The increasing importance of plant architecture in growth models. Ann Bot. 2007;101(8):1053–1063.

13

Crimaldi M, Cartenì F, Giannino F. VISmaF: Synthetic tree for immersive virtual visualization in smart farming part Ⅰ: Scientific background review and model proposal. Agronomy. 2021;11(12):2458.

14
Streit K, Henke M, Bayol B, Cournède P-H, Sievänen R, Kurth W. Impact of geometrical traits on light interception in conifers: Analysis using an FSPM for Scots pine, in 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA); Nov 2016. p. 194–203.
15
Allen MT, Prusinkiewicz P, Favreau RR, Dejong TM. L-Peach, an L-system-based model for simulating architecture, carbohydrate source–sink interactions and physiological responses of growing trees. In: Vos J, Marcelis LFM, De Visser PHB, Struik PC, Evers JB, editors. Functional-Structural Plant Modelling in Crop Production. Dordrecht (Netherlands): Springer Netherlands; 2007. p. 139–150.
16

Surový P, Yoshimoto A. Application of a functional-structural plant model (FSPM) to optimize a management regime. FORMATH. 2013;12:173–189.

17

de Reffye P, Hu B, Kang M, Letort V, Jaeger M. Two decades of research with the GreenLab model in agronomy. Ann Bot. 2021;127(3):281–295.

18

Soualiou S, Wang Z, Sun W, de Reffye P, Collins B, Louarn G, Song Y. Functional–structural plant models Mission in advancing crop science: Opportunities and prospects. Front Plant Sci. 2021;12:747142.

19

Evers JB, van der Werf W, Stomph TJ, Bastiaans L, Anten NPR. Understanding and optimizing species mixtures using functional–structural plant modelling. J Exp Bot. 2019;70(9):2381–2388.

20
Burgess PJ, Graves A, García de Jalón S, Palma JH, Dupraz C, Burgess P, Modelling agroforestry systems. In: Agroforestry for sustainable agriculture.Cambridge (UK): Burleigh Dodds Science Publishing, 2019; p. 209–238.
21
Cournède P-H. A forest growth simulator based on functional-structural modelling of individual trees, Paper presented at: 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, IEEE; 2009 Nov; Beijing, China.
22

Lamanda N, Dauzat J, Jourdan C, Martin P, Malézieux E. Using 3D architectural models to assess light availability and root bulkiness in coconut agroforestry systems. Agrofor Syst. 2008;72(1):63–74.

23
Lemière L, Jaeger M, Subsol G, Gosme M. Graph theory applied to agroforestry system co-design, presented at the 5th World Congress on Agroforestry, Jul 2022 [accessed 30 Nov 2022].
24
Kurth W, Kniemeyer O, Buck-Sorlin G. Relational Growth Grammars – A graph rewriting approach to dynamical systems with a dynamical structure. In: Banâtre J-P, Fradet P, Giavitto J-L, Michel O, editors. Unconventional programming paradigms, in Lecture Notes in Computer Science. Berlin, Heidelberg (Germany): Springer; 2005. p. 56–72. https://doi.org/10.1007/11527800_5
25

Rova S, Meire P, Müller F, Simeoni M, Pranovi F. A petri net modeling approach to explore the temporal dynamics of the provision of multiple ecosystem services. Sci Total Environ. 2019;655:1047–1061.

26

Rafflegeau S, Gosme M, Barkaoui K, Garcia L, Allinne C, Deheuvels O, Grimaldi J, Jagoret P, Lauri P-E, Merot A, Metay A, Reyes F, Saj S, Curry GN, Justes E. The ESSU concept for designing, modeling and auditing ecosystem service provision, in intercropping and agroforestry systems. A review. Agronomy for Sustainable Development. 2023;43:43.

27

Van Noordwijk M, Lusiana B. WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. Agrofor Syst. 1998;43(1):217–242.

28

Dupraz C. Hi-sAFe: A 3D agroforestry model for integrating dynamic tree–crop interactions. Sustainability. 2019;11(8):2293.

29
Liagre F, Santi F, Sotteau C, de Coligny F. EcoAF on CAPSIS, simulates the economics effects of your choices when building and managing an agroforestry field!, presented at the 4th World congress on Agroforestry, May 2019 [accessed: 11 Jul. 2022].
30
RegenWorks - Agroforestry Farm Management and Analytics Software. Regen Farmer [accessed 26 Feb 2023].
31

Kastuari A, Suwardhi D, Hanan H, Wikantika K, Harto AB, Virtriana R, Trisyanti SW. Implementation of SExI–FS (spatially explicit individual-based forest simulator) model using UAV aerial photo data case study: Jatinangor ITB campus. HAYATI J Biosci. 2020;27(4):314.

32

Degenne P, Lo Seen D, Parigot D, Forax R, Tran A, Ait Lahcen A, Curé O, Jeansoulin R. Design of a domain specific language for modelling processes in landscapes. Ecol Model. 2009;220(24):3527–3535.

33

Degenne P, Lo Seen D. Ocelet: Simulating processes of landscape changes using interaction graphs. SoftwareX. 2016;5(C):89–95.

34
Elevitch CR, Logan N. Agroforestry Design ToolTM’. Hawaii [accessed 4 Nov 2021].
35
‘ShadeMotion’. CATIE [accessed 26 Feb 2023].
36
Aggarwal CC, Wang H. Graph data management and mining: A survey of algorithms and applications. In: Aggarwal CC, Wang H, editors. Managing and mining graph data, in Advances in Database Systems, vol. 40. Boston (MA): Springer US; 2010. p. 13–68. https://doi.org/10.1007/978-1-4419-6045-0_2
37

Damiand G, Lienhardt P. Combinatorial maps: Efficient data structures for computer graphics and image processing. CRC Press; 2014.

38

Vince A. Combinatorial maps. J Comb Theory Ser B. 1983;34(1):1–21.

39
Lienhardt P. ‘Modelisation et evolution de surfaces libres’, these de doctorat. Strasbourg. 1987;1 [accessed 20 Feb 2023].
40

Essam JW, Fisher ME. Some basic definitions in graph theory. Rev Mod Phys. 1970;42(2):271–288.

41

Gaudio N, Louarn G, Barillot R, Meunier C, Vezy R, Launay M. Exploring complementarities between modelling approaches that enable upscaling from plant community functioning to ecosystem services as a way to support agroecological transition. Silico Plants. 2022;4(1):diab037.

42

Médiène S, Valantin-Morison M, Sarthou JP, de Tourdonnet S, Gosme M, Bertrand M, Roger-Estrade J, Aubertot JN, Rusch A, Motisi N, et al. Agroecosystem management and biotic interactions: A review. Agron Sustain Dev. 2011;31(3):491–514.

43
Najm E. Raisonner sur des données en agroécologie: application à la sélection d’espèces végétales de service; 2022.
44

Rigal C, Wagner S, Nguyen MP, Jassogne L, Vaast P. ShadeTreeAdvice methodology: Guiding tree-species selection using local knowledge. People Nat. 2022;4(5):1233–1248.

45
Mahmood T, Fulmer W, Mungoli N, Huang J, Lu A. Improving information sharing and collaborative analysis for remote geospatial visualization using mixed reality. Paper presented at: 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), IEEE: 2019 Oct; Beijing, China.
Plant Phenomics
Article number: 0120
Cite this article:
Lemiere L, Jaeger M, Gosme M, et al. Combinatorial Maps, a New Framework to Model Agroforestry Systems. Plant Phenomics, 2023, 5: 0120. https://doi.org/10.34133/plantphenomics.0120

187

Views

2

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 March 2023
Accepted: 04 November 2023
Published: 15 December 2023
© 2023 Laëtitia Lemiere et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return