Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
It is crucial to assess the impact of climate change on crop productivity and sustainability for the development of effective adaptation measures. Crop models are essential for quantifying this impact on crop yields. To better express crops’ intrinsic growth and development patterns and their plasticity under different environmental conditions, the functional–structural plant model (FSPM) “GreenLab” has been developed. GreenLab is an organ-level model that can describe the intrinsic growth and development patterns of plants based on mathematical expressions without considering the influence of environmental factors, and then simulate the growth and development of plants in expressing plant plasticity under different environmental conditions. Moreover, the distinctive feature of GreenLab lies in its ability to compute model source–sink parameters affecting biomass production and allocation based on measured plant data. Over the past two decades, the GreenLab model has undergone continuous development, incorporating novel modeling methods and techniques, including the dual-scale automaton, substructure methods, the inverse of source–sink parameters, crown analysis, organic series, potential structure, and parameter optimization techniques. This paper reviews the development history, the basic concepts, main theories, characteristics, and applications of the GreenLab model. Additionally, we introduce the software tools that implement the GreenLab model. Last, we discuss the perspectives and directions for the GreenLab model’s future development.
Huang M, Wang J, Wang B, Liu DL, Yu Q, He D, Wang N, Pan X. Optimizing sowing window and cultivar choice can boost China’s maize yield under 1.5 ℃ and 2 ℃ global warming. Environ Res Lett. 2020;15(2):Article 024015.
Peng B, Guan K, Tang J, Ainsworth EA, Asseng S, Bernacchi CJ, Cooper M, Delucia EH, Elliott JW, Ewert F, et al. Towards a multiscale crop modelling framework for climate change adaptation assessment. Nat Plants. 2020;6(4):338–348.
Chenu K, Porter JR, Martre P, Basso B, Chapman SC, Ewert F, Bindi M, Asseng S. Contribution of crop models to adaptation in wheat. Trends Plant Sci. 2017;22(6):472–490.
Martín MM-S, Olesen JE, Porter JR. A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark. Agric For Meteorol. 2014;187:1–13.
Gornott C, Wechsung F. Statistical regression models for assessing climate impacts on crop yields: A validation study for winter wheat and silage maize in Germany. Agric For Meteorol. 2016;217:89–100.
Kern A, Barcza Z, Marjanović H, Árendás T, Fodor N, Bónis P, Bognár P, Lichtenberger J. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agric For Meteorol. 2018;260-261:300–320.
Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 2014;111(9):3268–3273.
Peng B, Guan K, Chen M, Lawrence DM, Pokhrel Y, Suyker A, Arkebauer T, Lu Y. Improving maize growth processes in the community land model: Implementation and evaluation. Agric For Meteorol. 2018;250-251:64–89.
Antle JM, Basso B, Conant RT, Godfray HCJ, Jones JW, Herrero M, Howitt RE, Keating BA, Munoz-Carpena R, Rosenzweig C, et al. Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agric Syst. 2017;155:255–268.
Kim N, Na SI, Park CW, Huh M, Oh J, Ha KJ, Cho J, Lee YW. An artificial intelligence approach to prediction of corn yields under extreme weather conditions using satellite and meteorological data. Appl Sci. 2020;10(11):3785.
Shi W, Tao F, Zhang Z. A review on statistical models for identifying climate contributions to crop yields. J Geogr Sci. 2013;23(3):567–576.
Khaki S, Wang L. Crop yield prediction using deep neural networks. Front Plant Sci. 2019;10:621.
Sun J, Di L, Sun Z, Shen Y, Lai Z. County-level soybean yield prediction using deep CNN-LSTM model. Sensors. 2019;19(20):4363.
Si Z, Zain M, Li S, Liu J, Liang Y, Gao Y, Duan A. Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-wheat model. Agric Water Manag. 2021;244:106592.
Kuijpers WJP, van de Molengraft MJG, van Mourik S, van’t Ooster A, Hemming S, van Henten EJ. Model selection with a common structure: Tomato crop growth models. Biosyst Eng. 2019;187:247–257.
Kherif O, Seghouani M, Justes E, Plaza-Bonilla D, Bouhenache A, Zemmouri B, Dokukin P, Latati M. The first calibration and evaluation of the STICS soil-crop model on chickpea-based intercropping system under Mediterranean conditions. Eur J Agron. 2022;133:126449.
Holzworth D, Huth NI, Fainges J, Brown H, Zurcher E, Cichota R, Verrall S, Herrmann NI, Zheng B, Snow V. APSIM next generation: Overcoming challenges in modernising a farming systems model. Environ Model Softw. 2018;103:43–51.
Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PHB. Functional–structural plant modelling: A new versatile tool in crop science. J Exp Bot. 2009;61(8):2101–2115.
Soualiou S, Wang Z, Sun W, de Reffye P, Collins B, Louarn G, Song Y. Functional–structural plant models mission in advancing crop science: Opportunities and prospects. Front Plant Sci. 2021;12:747142.
Eschenbach C. Emergent properties modelled with the functional structural tree growth model ALMIS: Computer experiments on resource gain and use. Ecol Model. 2005;186(4):470–488.
Perttunen J, Sievänen R. Incorporating Lindenmayer systems for architectural development in a functional-structural tree model. Ecol Model. 2005;181(4):479–491.
Allen MT, Prusinkiewicz P, Dejong TM. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: The L-PEACH model. New Phytol. 2005;166(3):869–880.
de Reffye P, Hu B-G, Kang M, Letort V, Jaeger M. Two decades of research with the GreenLab model in agronomy. Ann Bot. 2021;127(3):281–295.
Kang M, Hua J, Wang X, de Reffye P, Jaeger M, Akaffou S. Estimating sink parameters of stochastic functional-structural plant models using organic series-continuous and rhythmic development. Front Plant Sci. 2018;9:1688.
Yan H, Kang M, de Reffye P, Dingkuhn M. A dynamic, architectural plant model simulating resource-dependent growth. Ann Bot. 2004;93(5):591–602.
Kang M, Cournède P-H, de Reffye P, Auclair D, Hu B-G. Analytical study of a stochastic plant growth model: Application to the GreenLab model. Math Comput Simul. 2008;78(1):57–75.
Letort V, Sabatier S, Okoma MP, Jaeger M, de Reffye P. Internal trophic pressure, a regulator of plant development? Insights from a stochastic functional–structural plant growth model applied to Coffea trees. Ann Bot. 2020;126(4):687–699.
Kang M, Wang X, Hua J, Hu B-G, Wang F-Y, de Reffye P. Over two decades of research with Greenlab model. J Agric Big Data. 2021;3(3):3–12.
Barczi J-F, Rey H, Caraglio Y, de Reffye P, Barthélémy D, Dong QX, Fourcaud T. AmapSim: A structural whole-plant simulator based on botanical knowledge and designed to host external functional models. Ann Bot. 2008;101(8):1125–1138.
de Reffye P, Barthélémy D, Blaise F, Fourcaud T, Houllier F. A functional model of tree growth and tree architecture. Silva Fenica. 1997;31(3):297–311.
Ma Y, Chen Y, Zhu J, Meng L, Guo Y, Li B, Hoogenboom G. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize. Ann Bot. 2018;121(5):961–973.
Wang F, Kang M, Lu Q, Letort V, Han H, Guo Y, de Reffye P, Li B. A stochastic model of tree architecture and biomass partitioning: Application to Mongolian Scots pines. Ann Bot. 2011;107(5):781–792.
Mathieu A, Cournède P-H, Letort V, Barthélémy D, de Reffye P. A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition. Ann Bot. 2009;103(8):1173–1186.
Vavitsara ME, Sabatier S, Kang M, Ranarijaona HLT, de Reffye P. Yield analysis as a function of stochastic plant architecture: Case of Spilanthes acmella in the wet and dry season. Comput Electron Agric. 2017;138:105–116.
Zhao X, de Reffye P, Xiong F-L, Hu B-G, Zhan Z-G. Dual-scale automaton model for virtual plant development. Chin J Comput. 2001;24(6):608–608.
Yan H, de Reffye P, Pan CH, Hu B-G. Fast construction of plant architectural models based on substructure decomposition. J Comput Sci Technol. 2003;18(6):780–787.
Tondjo K, Brancheriau L, Sabatier S, Kokutse AD, Kokou K, Jaeger M, de Reffye P, Fourcaud T. Stochastic modelling of tree architecture and biomass allocation: Application to teak (Tectona grandis L. f.), a tree species with polycyclic growth and leaf neoformation. Ann Bot. 2018;121(7):1397–1410.
Guo Y, Ma Y, Zhan Z, Li B, Dingkuhn M, Luquet D, de Reffye P. Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Ann Bot. 2006;97(2):217–230.
Diao J, de Reffye P, Lei X, Guo H, Letort V. Simulation of the topological development of young eucalyptus using a stochastic model and sampling measurement strategy. Comput Electron Agric. 2012;80:105–114.
Ma Y, Li B, Zhan Z, Guo Y, Luquet D, de Reffye P, Dingkuhn M. Parameter stability of the functional-structural plant model GREENLAB as affected by variation within populations, among seasons and among growth stages. Ann Bot. 2007;99(1):61–73.
Ma Y, Wen M, Guo Y, Li B, Cournède PH, de Reffye P. Parameter optimization and field validation of the functional-structural model GREENLAB for maize at different population densities. Ann Bot. 2008;101(8):1185–1194.
Kang M, Yang L, Zhang B, de Reffye P. Correlation between dynamic tomato fruit-set and source-sink ratio: A common relationship for different plant densities and seasons? Ann Bot. 2011;107(5):805–815.
Kang M, Wang X, Qi R, Jia ZQ, de Reffye P, Huang SW. Analyzing and optimizing yield formation of tomato introgression lines using plant model. Euphytica. 2021;217(6):100.
Wang X, Kang M, Fan X-R, Yang L, Zhang B, Huang SW, de Reffye P, Wang F-Y. What are the differences in yield formation among two cucumber (Cucumis sativus L.) cultivars and their F1 hybrid? J. Integr. Agric. 2020;19(7):1789–1801.
Wu L, le Dimet FX, de Reffye P, Hu B-G, Cournède P-H, Kang M. An optimal control methodology for plant growth-case study of a water supply problem of sunflower. Math Comput Simul. 2012;82(5):909–923.
Ma Y, Wubs AM, Mathieu A, Heuvelink E, Zhu JY, Hu B-G, Cournède P-H, de Reffye P. Simulation of fruit-set and trophic competition and optimization of yield advantages in six capsicum cultivars using functional-structural plant modelling. Ann Bot. 2011;107(5):793–803.
Kang M, Heuvelink E, Carvalho SMP, de Reffye P. A virtual plant that responds to the environment like a real one: The case for chrysanthemum. New Phytol. 2012;195(2):384–395.
Christophe A, Letort V, Hummel I, Cournède P-H, de Reffye P, Lecœur J. A model-based analysis of the dynamics of carbon balance at the whole-plant level in Arabidopsis thaliana. Funct Plant Biol. 2008;35(11):1147–1162.
Jullien A, Mathieu A, Allirand JM, Pinet A, de Reffye P, Cournède P-H, Ney B. Characterization of the interactions between architecture and source-sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model. Ann Bot. 2011;107(5):765–779.
Wang X, Li D, Lin B, Hua J, Kang M, Zhang D, de Reffye P, Wang F-Y. Stochastic simulation of branch morphological structure in oilseed rape (in Chinese). Sci Sinica Vitae. 2019;49(1):67–76.
Wang F, Letort V, Lu Q, Bai X, Guo Y, de Reffye P, and Li B. A functional and structural Mongolian Scots pine (Pinus sylvestris var. mongolica) model integrating architecture, biomass and effects of precipitation. PLOS ONE. 2012;7(8):e43531.
Letort V, Cournède P-H, Mathieu A, de Reffye P, Constant T. Parametric identification of a functional-structural tree growth model and application to beech trees (Fagus sylvatica). Funct Plant Biol. 2008;35(9-10):951–963.
de Reffye P, Kang M, Hua J, Auclair D. Stochastic modelling of tree annual shoot dynamics. Ann For Sci. 2012;69(2):153–165.
Qi R, Ma Y, Hu B, de Reffye P, Cournède P-H. Optimization of source-sink dynamics in plant growth for ideotype breeding: A case study on maize. Comput Electron Agric. 2010;71(1):96–105.
Qi R, Letort V, Kang M, Cournède P-H, de Reffye P, Fourcaud T. Application of the GreenLab model to simulate and optimize wood production and tree stability: A theoretical study. Silva Fennica. 2009;43(3):465–487.
Wang H, Hua J, Kang M, Wang X, Fan X-R, Fourcaud T, de Reffye P. Stronger wind, smaller tree: Testing tree growth plasticity through a modeling approach. Front Plant Sci. 2022;13:971690.
Wu Q-L, Cournède P-H, Mathieu A. An efficient computational method for global sensitivity analysis and its application to tree growth modelling. Reliabil Eng Syst Safety. 2012;107:35–43.
Mathieu A, Vidal T, Jullien A, Wu Q-L, Chambon C, Bayol B, Cournède P-H. A new methodology based on sensitivity analysis to simplify the recalibration of functional-structural plant models in new conditions. Ann Bot. 2018;122(3):397–408.
Letort V, Mahe P, Cournède P-H, de Reffye P, Courtois B. Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Ann Bot. 2008;101(8):1243–1254.
Fan X-R, Kang M, Heuvelink E, de Reffye P, Hu B-G. A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth. Ecol Model. 2015;312:363–373.
Fan X-R, Wang X, Kang M, Hua J, Guo S, de Reffye P, Hu B-G. A knowledge-and-data-driven modeling approach for simulating plant growth and the dynamics of CO2/O-2 concentrations in a closed system of plants and humans by integrating mechanistic and empirical models. Comput Electron Agric. 2018;148:280–290.
Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants. 2018;4(1):23–29.
Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc. 2018;13(12):2944–2963.
Hu Y, Schmidhalter U. Opportunity and challenges of phenotyping plant salt tolerance. Trends Plant Sci. 2023;28(5):552–566.
Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J. Crop Phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol Plant. 2020;13(2):187–214.
Feng L, Mailhol JC, Rey H, Griffon S, Auclair D, de Reffye P. Comparing an empirical crop model with a functional structural plant model to account for individual variability. Eur J Agron. 2014;53:16–27.
Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, de Reffye P. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc Natl Acad Sci USA. 2014;111(39):E4127.
Wang X, Kang M, Hua J, de Reffye P. From stand to organ level—A trial of connecting DSSAT and GreenLab crop model through data. Smart Agric. 2021;3(2):77–87.
Jeong S, Ko J, Yeom J-M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Sci Total Environ. 2022;802:149726.
Feng P, Wang B, Liu DL, Waters C, Xiao D, Shi L, Yu Q. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agric For Meteorol. 2020;285-286:107922.
Chen Y, Tao F. Potential of remote sensing data-crop model assimilation and seasonal weather forecasts for early-season crop yield forecasting over a large area. Field Crop Res. 2022;276:108398.
Kang F, Cournéde P-H, Lecoeur J, Letort V. SUNLAB: A functional-structural model for genotypic and phenotypic characterization of the sunflower crop. Ecol Model. 2014;290:21–33.
Kang M, Evers JB, Vos J, de Reffye P. The derivation of sink functions of wheat organs using the GREENLAB model. Ann Bot. 2008;101(8):1099–1108.
de Reffye P, Blaise F, Chemouny S, Jaffuel S, Fourcaud T, Houllier F. Calibration of a hydraulic architecture-based growth model of cotton plants. Agronomie, 1999;19(3-4):265-280.
Dong Q, Louarn G, Wang Y, Barczi JF, de Reffye P. Does the structure-function model GREENLAB deal with crop phenotypic plasticity induced by plant spacing? A case study on tomato. Ann Bot. 2008;101(8):1195–1206.
Mathieu A, Letort V, Cournède P-H, Zhang BG, Heuret P, de Reffye P. Oscillations in functional structural plant growth models. Math Model Natur Phenom. 2012;7(6):47–66.
Ma Y, Zhu J, Hu B-G, Heuvelink E, de Reffye P. Simulation of spatial and temporal variation of fruit set patterns on pepper plant based on ‘source-sink’ theory. Acta Ecologica Sinica. 2010;30(24):7072–7078.
Okoma P, Akaffou S, de Reffye P, Hamon P, Hamon S, Konan O, Kouassi KH, Legnate H, Letort V, Sabatier S. Estimation of stem and leaf dry biomass using a non-destructive method applied to African Coffea species. Agrofor Syst. 2016;92(3):667–675.
Guo H, Lei X-D, Letort V, Lu Y-C, de Reffye P. A Functional-Structural Model GreenLab for Pinus Tabulaeformis. Acta Phytoecologica Sinica. 2009;33(5):950–957.
Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).