AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Functional–Structural Plant Model “GreenLab”: A State-of-the-Art Review

Xiujuan Wang1Jing Hua1Mengzhen Kang1,2( )Haoyu Wang1Philippe de Reffye3
State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier F-34398, France
Show Author Information

Abstract

It is crucial to assess the impact of climate change on crop productivity and sustainability for the development of effective adaptation measures. Crop models are essential for quantifying this impact on crop yields. To better express crops’ intrinsic growth and development patterns and their plasticity under different environmental conditions, the functional–structural plant model (FSPM) “GreenLab” has been developed. GreenLab is an organ-level model that can describe the intrinsic growth and development patterns of plants based on mathematical expressions without considering the influence of environmental factors, and then simulate the growth and development of plants in expressing plant plasticity under different environmental conditions. Moreover, the distinctive feature of GreenLab lies in its ability to compute model source–sink parameters affecting biomass production and allocation based on measured plant data. Over the past two decades, the GreenLab model has undergone continuous development, incorporating novel modeling methods and techniques, including the dual-scale automaton, substructure methods, the inverse of source–sink parameters, crown analysis, organic series, potential structure, and parameter optimization techniques. This paper reviews the development history, the basic concepts, main theories, characteristics, and applications of the GreenLab model. Additionally, we introduce the software tools that implement the GreenLab model. Last, we discuss the perspectives and directions for the GreenLab model’s future development.

References

1

Huang M, Wang J, Wang B, Liu DL, Yu Q, He D, Wang N, Pan X. Optimizing sowing window and cultivar choice can boost China’s maize yield under 1.5 ℃ and 2 ℃ global warming. Environ Res Lett. 2020;15(2):Article 024015.

2
United Nations Department of Economic and Social Affairs PD, World Population Prospects 2022: Summary of Results, 2022, vol. UN DESA/POP/2022/TR/NO. 3.
3

Peng B, Guan K, Tang J, Ainsworth EA, Asseng S, Bernacchi CJ, Cooper M, Delucia EH, Elliott JW, Ewert F, et al. Towards a multiscale crop modelling framework for climate change adaptation assessment. Nat Plants. 2020;6(4):338–348.

4
Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Lobell DB, Travasso MI. Chapter 7: Food security and food production systems, in Food security and food production systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press; 2014. p. 485–533.
5

Chenu K, Porter JR, Martre P, Basso B, Chapman SC, Ewert F, Bindi M, Asseng S. Contribution of crop models to adaptation in wheat. Trends Plant Sci. 2017;22(6):472–490.

6

Martín MM-S, Olesen JE, Porter JR. A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark. Agric For Meteorol. 2014;187:1–13.

7

Gornott C, Wechsung F. Statistical regression models for assessing climate impacts on crop yields: A validation study for winter wheat and silage maize in Germany. Agric For Meteorol. 2016;217:89–100.

8

Kern A, Barcza Z, Marjanović H, Árendás T, Fodor N, Bónis P, Bognár P, Lichtenberger J. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agric For Meteorol. 2018;260-261:300–320.

9

Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 2014;111(9):3268–3273.

10

Peng B, Guan K, Chen M, Lawrence DM, Pokhrel Y, Suyker A, Arkebauer T, Lu Y. Improving maize growth processes in the community land model: Implementation and evaluation. Agric For Meteorol. 2018;250-251:64–89.

11

Antle JM, Basso B, Conant RT, Godfray HCJ, Jones JW, Herrero M, Howitt RE, Keating BA, Munoz-Carpena R, Rosenzweig C, et al. Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agric Syst. 2017;155:255–268.

12

Kim N, Na SI, Park CW, Huh M, Oh J, Ha KJ, Cho J, Lee YW. An artificial intelligence approach to prediction of corn yields under extreme weather conditions using satellite and meteorological data. Appl Sci. 2020;10(11):3785.

13

Shi W, Tao F, Zhang Z. A review on statistical models for identifying climate contributions to crop yields. J Geogr Sci. 2013;23(3):567–576.

14

Khaki S, Wang L. Crop yield prediction using deep neural networks. Front Plant Sci. 2019;10:621.

15

Sun J, Di L, Sun Z, Shen Y, Lai Z. County-level soybean yield prediction using deep CNN-LSTM model. Sensors. 2019;19(20):4363.

16

Si Z, Zain M, Li S, Liu J, Liang Y, Gao Y, Duan A. Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-wheat model. Agric Water Manag. 2021;244:106592.

17

Kuijpers WJP, van de Molengraft MJG, van Mourik S, van’t Ooster A, Hemming S, van Henten EJ. Model selection with a common structure: Tomato crop growth models. Biosyst Eng. 2019;187:247–257.

18

Kherif O, Seghouani M, Justes E, Plaza-Bonilla D, Bouhenache A, Zemmouri B, Dokukin P, Latati M. The first calibration and evaluation of the STICS soil-crop model on chickpea-based intercropping system under Mediterranean conditions. Eur J Agron. 2022;133:126449.

19

Holzworth D, Huth NI, Fainges J, Brown H, Zurcher E, Cichota R, Verrall S, Herrmann NI, Zheng B, Snow V. APSIM next generation: Overcoming challenges in modernising a farming systems model. Environ Model Softw. 2018;103:43–51.

20

Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PHB. Functional–structural plant modelling: A new versatile tool in crop science. J Exp Bot. 2009;61(8):2101–2115.

21

Soualiou S, Wang Z, Sun W, de Reffye P, Collins B, Louarn G, Song Y. Functional–structural plant models mission in advancing crop science: Opportunities and prospects. Front Plant Sci. 2021;12:747142.

22

Eschenbach C. Emergent properties modelled with the functional structural tree growth model ALMIS: Computer experiments on resource gain and use. Ecol Model. 2005;186(4):470–488.

23

Perttunen J, Sievänen R. Incorporating Lindenmayer systems for architectural development in a functional-structural tree model. Ecol Model. 2005;181(4):479–491.

24

Allen MT, Prusinkiewicz P, Dejong TM. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: The L-PEACH model. New Phytol. 2005;166(3):869–880.

25

de Reffye P, Hu B-G, Kang M, Letort V, Jaeger M. Two decades of research with the GreenLab model in agronomy. Ann Bot. 2021;127(3):281–295.

26

Kang M, Hua J, Wang X, de Reffye P, Jaeger M, Akaffou S. Estimating sink parameters of stochastic functional-structural plant models using organic series-continuous and rhythmic development. Front Plant Sci. 2018;9:1688.

27

Yan H, Kang M, de Reffye P, Dingkuhn M. A dynamic, architectural plant model simulating resource-dependent growth. Ann Bot. 2004;93(5):591–602.

28

Kang M, Cournède P-H, de Reffye P, Auclair D, Hu B-G. Analytical study of a stochastic plant growth model: Application to the GreenLab model. Math Comput Simul. 2008;78(1):57–75.

29

Letort V, Sabatier S, Okoma MP, Jaeger M, de Reffye P. Internal trophic pressure, a regulator of plant development? Insights from a stochastic functional–structural plant growth model applied to Coffea trees. Ann Bot. 2020;126(4):687–699.

30

Kang M, Wang X, Hua J, Hu B-G, Wang F-Y, de Reffye P. Over two decades of research with Greenlab model. J Agric Big Data. 2021;3(3):3–12.

31

Barczi J-F, Rey H, Caraglio Y, de Reffye P, Barthélémy D, Dong QX, Fourcaud T. AmapSim: A structural whole-plant simulator based on botanical knowledge and designed to host external functional models. Ann Bot. 2008;101(8):1125–1138.

32
Barczi J-F, de Reffye P, Caraglio Y. Essai sur l’identification et la mise en œuvre des paramètres nécessaires a la simulation d’une architecture végétale: Le logiciel AmapSim. In: Bouchon J, de Reffye, Barthélémy D, editors. Modélisation et simulation de l’architecture des végétaux. Paris: INRA Editions; 1997. p. 205–254.
33

de Reffye P, Barthélémy D, Blaise F, Fourcaud T, Houllier F. A functional model of tree growth and tree architecture. Silva Fenica. 1997;31(3):297–311.

34
Hallé F, Oldeman RAA, Tomlinson PB. Tropical trees and forests: An architectural analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1978; p. ⅩⅧ, 444.
35
de Reffye P, Edelin C, Françon J, Jaeger M, Puech C. Plant models faithful to botanical structure and development. In: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques. Atlanta: ACM Press; 1988.
36
Zhao X, de Reffye P, Barthelemy D, Hu B-G. Interactive simulation of plant architecture based on a dual-scale automaton model. In: Proceedings of the Plant Growth Modeling and Applications. Beijing: Tsinghua University Press, Springer; 2003.
37

Ma Y, Chen Y, Zhu J, Meng L, Guo Y, Li B, Hoogenboom G. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize. Ann Bot. 2018;121(5):961–973.

38

Wang F, Kang M, Lu Q, Letort V, Han H, Guo Y, de Reffye P, Li B. A stochastic model of tree architecture and biomass partitioning: Application to Mongolian Scots pines. Ann Bot. 2011;107(5):781–792.

39

Mathieu A, Cournède P-H, Letort V, Barthélémy D, de Reffye P. A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition. Ann Bot. 2009;103(8):1173–1186.

40

Vavitsara ME, Sabatier S, Kang M, Ranarijaona HLT, de Reffye P. Yield analysis as a function of stochastic plant architecture: Case of Spilanthes acmella in the wet and dry season. Comput Electron Agric. 2017;138:105–116.

41

Zhao X, de Reffye P, Xiong F-L, Hu B-G, Zhan Z-G. Dual-scale automaton model for virtual plant development. Chin J Comput. 2001;24(6):608–608.

42

Yan H, de Reffye P, Pan CH, Hu B-G. Fast construction of plant architectural models based on substructure decomposition. J Comput Sci Technol. 2003;18(6):780–787.

43
de Reffye P, Hu B-G. Invited talk. Relevant qualitative and quantitative choices for building an efficient dynamic plant growth model: GreenLab case. In: Proceedings of Plant Growth Modeling and Applications. Beijing, China: Tsinghua University Press, Springer; 2003. p. 87–107.
44
Hu B-G, de Reffye P, Zhao X, Yan H, Kang M. GreenLab: A new methodology towards plant functional-structural model—Structural aspect. In: Proceedings of Plant Growth Modeling and Applications. Beijing, China: Tsinghua University Press, Springer; 2003. p. 21–35.
45
Yan H, Barczi JF, de Reffye P, Hu B-G. Fast algorithms of plant computation based on substructure instances. Paper presented at: International Conferences in Central Europe on Computer Graphics, Visualization and Computer Vision (Wscg‘2002); 2003 February 3 to 7; Plzen - Bory, Czech Republic.
46

Tondjo K, Brancheriau L, Sabatier S, Kokutse AD, Kokou K, Jaeger M, de Reffye P, Fourcaud T. Stochastic modelling of tree architecture and biomass allocation: Application to teak (Tectona grandis L. f.), a tree species with polycyclic growth and leaf neoformation. Ann Bot. 2018;121(7):1397–1410.

47

Guo Y, Ma Y, Zhan Z, Li B, Dingkuhn M, Luquet D, de Reffye P. Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Ann Bot. 2006;97(2):217–230.

48

Diao J, de Reffye P, Lei X, Guo H, Letort V. Simulation of the topological development of young eucalyptus using a stochastic model and sampling measurement strategy. Comput Electron Agric. 2012;80:105–114.

49

Ma Y, Li B, Zhan Z, Guo Y, Luquet D, de Reffye P, Dingkuhn M. Parameter stability of the functional-structural plant model GREENLAB as affected by variation within populations, among seasons and among growth stages. Ann Bot. 2007;99(1):61–73.

50

Ma Y, Wen M, Guo Y, Li B, Cournède PH, de Reffye P. Parameter optimization and field validation of the functional-structural model GREENLAB for maize at different population densities. Ann Bot. 2008;101(8):1185–1194.

51

Kang M, Yang L, Zhang B, de Reffye P. Correlation between dynamic tomato fruit-set and source-sink ratio: A common relationship for different plant densities and seasons? Ann Bot. 2011;107(5):805–815.

52

Kang M, Wang X, Qi R, Jia ZQ, de Reffye P, Huang SW. Analyzing and optimizing yield formation of tomato introgression lines using plant model. Euphytica. 2021;217(6):100.

53

Wang X, Kang M, Fan X-R, Yang L, Zhang B, Huang SW, de Reffye P, Wang F-Y. What are the differences in yield formation among two cucumber (Cucumis sativus L.) cultivars and their F1 hybrid? J. Integr. Agric. 2020;19(7):1789–1801.

54

Wu L, le Dimet FX, de Reffye P, Hu B-G, Cournède P-H, Kang M. An optimal control methodology for plant growth-case study of a water supply problem of sunflower. Math Comput Simul. 2012;82(5):909–923.

55

Ma Y, Wubs AM, Mathieu A, Heuvelink E, Zhu JY, Hu B-G, Cournède P-H, de Reffye P. Simulation of fruit-set and trophic competition and optimization of yield advantages in six capsicum cultivars using functional-structural plant modelling. Ann Bot. 2011;107(5):793–803.

56
Kang M, de Reffye P, Heuvelink E. Modeling the growth of inflorescence. In: Proceedings of 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Beijing, China: IEEE; 2009 Nov. 9–13. p. 303–310.
57

Kang M, Heuvelink E, Carvalho SMP, de Reffye P. A virtual plant that responds to the environment like a real one: The case for chrysanthemum. New Phytol. 2012;195(2):384–395.

58

Christophe A, Letort V, Hummel I, Cournède P-H, de Reffye P, Lecœur J. A model-based analysis of the dynamics of carbon balance at the whole-plant level in Arabidopsis thaliana. Funct Plant Biol. 2008;35(11):1147–1162.

59
Letort V, Cournède P-H, Lecoeur J, Hummel I, de Reffye P, Chiustophe A. Effect of topological and phenological changes on biomass partitioning in Arabidopsis thaliana inflorescence: A preliminary model-based study. In: Fourcaud T, Zhang XP, editors. Proceedings of the PMA 2006: Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Beijing, China: IEEE; 2006, p. 65–69.
60

Jullien A, Mathieu A, Allirand JM, Pinet A, de Reffye P, Cournède P-H, Ney B. Characterization of the interactions between architecture and source-sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model. Ann Bot. 2011;107(5):765–779.

61
Jullien A, Mathieu A, Allirand JM, Pinet A, de Reffye P, Ney B, Cournède P-H. Modelling of branch and flower expansion in GreenLab model to account for the whole crop cycle of winter oilseed rape (Brassica napus L.). In: Plant Growth Modeling, Simulation, Visualization, & Applications. Beijing, China: IEEE; 2009. p. 167–174.
62
Jullien A, Mathieu A, Ney B, Qi R, Allirand J-M, Richard-Molard C. Use of a structure-function plant model to assess the morphogenetic plasticity. In: Kang M, Dumont Y, Guo Y, editors. 2012 IEEE Fourth International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Shanghai; 2012. p. 180–187.
63

Wang X, Li D, Lin B, Hua J, Kang M, Zhang D, de Reffye P, Wang F-Y. Stochastic simulation of branch morphological structure in oilseed rape (in Chinese). Sci Sinica Vitae. 2019;49(1):67–76.

64
Kang M, Heuvelink E, de Reffye P. Building virtual chrysanthemum based on sink-source relationships: Preliminary results. In: Marcelis LFM, VanStraten G, Stanghellini C, Heuvelink E, editors. Proceedings of the Iiird International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation, (Acta Horticulturae, no. 718). Wageningen: ISHS; 2006. p. 129.
65
Guo H, Letort V, Hong L, Fourcaud T, Cournède P-H, Lu Y, de Reffye P. Adaptation of the GreenLab model for analyzing sink-source relationships in Chinese Pine saplings. In: Fourcaud T, Zhang XP, editors. Proceedings of the PMA 2006: Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Beijing, China: IEEE; 2006. p. 236.
66

Wang F, Letort V, Lu Q, Bai X, Guo Y, de Reffye P, and Li B. A functional and structural Mongolian Scots pine (Pinus sylvestris var. mongolica) model integrating architecture, biomass and effects of precipitation. PLOS ONE. 2012;7(8):e43531.

67

Letort V, Cournède P-H, Mathieu A, de Reffye P, Constant T. Parametric identification of a functional-structural tree growth model and application to beech trees (Fagus sylvatica). Funct Plant Biol. 2008;35(9-10):951–963.

68

de Reffye P, Kang M, Hua J, Auclair D. Stochastic modelling of tree annual shoot dynamics. Ann For Sci. 2012;69(2):153–165.

69

Qi R, Ma Y, Hu B, de Reffye P, Cournède P-H. Optimization of source-sink dynamics in plant growth for ideotype breeding: A case study on maize. Comput Electron Agric. 2010;71(1):96–105.

70

Qi R, Letort V, Kang M, Cournède P-H, de Reffye P, Fourcaud T. Application of the GreenLab model to simulate and optimize wood production and tree stability: A theoretical study. Silva Fennica. 2009;43(3):465–487.

71
Wang H, Kang M, Hua J. Simulating plant plasticity under light environment: A source-sink approach. In: 2012 IEEE Fourth International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Shanghai, China: IEEE; 2012, p. 431–438.
72

Wang H, Hua J, Kang M, Wang X, Fan X-R, Fourcaud T, de Reffye P. Stronger wind, smaller tree: Testing tree growth plasticity through a modeling approach. Front Plant Sci. 2022;13:971690.

73

Wu Q-L, Cournède P-H, Mathieu A. An efficient computational method for global sensitivity analysis and its application to tree growth modelling. Reliabil Eng Syst Safety. 2012;107:35–43.

74
Lin Y, Kang M, Hua J. Fitting a functional structural plant model based on global sensitivity analysis. Paper presented at: 2012 IEEE International Conference on Automation Science and Engineering (CASE); Seoul, South Korea; 2012 Aug. 20–24. p. 790–795.
75

Mathieu A, Vidal T, Jullien A, Wu Q-L, Chambon C, Bayol B, Cournède P-H. A new methodology based on sensitivity analysis to simplify the recalibration of functional-structural plant models in new conditions. Ann Bot. 2018;122(3):397–408.

76

Letort V, Mahe P, Cournède P-H, de Reffye P, Courtois B. Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Ann Bot. 2008;101(8):1243–1254.

77

Fan X-R, Kang M, Heuvelink E, de Reffye P, Hu B-G. A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth. Ecol Model. 2015;312:363–373.

78

Fan X-R, Wang X, Kang M, Hua J, Guo S, de Reffye P, Hu B-G. A knowledge-and-data-driven modeling approach for simulating plant growth and the dynamics of CO2/O-2 concentrations in a closed system of plants and humans by integrating mechanistic and empirical models. Comput Electron Agric. 2018;148:280–290.

79
Zhan Z, de Reffye P, Houllier F, Hu B-G. Fitting a functional-structural growth model with plant architectural data. In: Hu B-G, Jaeger M, editors. Proceedings of the Plant Growth Modeling and Applications. Beijing, China: Tsinghua University Press, Springer; 2003. p. 236–249.
80
Kang M, Qi R, de Reffye P, Hu B-G. GreenScilab: A toolbox simulating plant growth in the Scilab environment. Paper presented at: Mesm ‘2006: 8th Middle East Simulation Multiconference. 2006; Alexandria, Egypt. p. 174.
81
Kang M, Wang X, Qi R, de Reffye P. GreenScilab-Crop, An open source software for plant simulation and parameter estimation. In: Hu B-G, Xie XY, Saguez C, Gomez C, editors. Proceedings of the 2009 IEEE International Workshop on Open-Source Software for Scientific Computation. Guiyang, China: IEEE; 2009. p. 91.
82
Ribeyre F, Jaeger M, Ribeyre A, de Reffye P. StemGL, a FSPM tool dedicated to crop plants model calibration in the single stem case. Paper presented at: 2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA); 2018 Nov. 4 to 8; Hefei, China.
83
de Reffye P, Jaeger M, Sabatier S, Letort V. Modelling the interaction between functioning and organogenesis in a stochastic plant growth model: Methodology for parameter estimation and illustration. Paper presented at: 2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA); 2018 Nov. 4 to 8; Hefei, China.
84
Hua J, Kang M. Functional tree models reacting to the environment. In: International Conference on Computer Graphics & Interactive Techniques. Vancouver, British Columbia, Canada: ACM; 2011.
85
Hua J, Kang M. Management of crop pruning assisted by computational experiment. Paper presented at: Advances in Biomedical Engineering; 2011; Hongkong.
86

Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants. 2018;4(1):23–29.

87
Swami P, Deswal K, Rana V, Yadav D, Munjal R. Chapter 3: Speed breeding—A powerful tool to breed more crops in less time accelerating crop research. In: Khan MK, Pandey A, Hamurcu M, Gupta OP, Gezgin S, editors. Abiotic stresses in wheat. Academic Press; 2023. p. 33–49.
88

Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc. 2018;13(12):2944–2963.

89

Hu Y, Schmidhalter U. Opportunity and challenges of phenotyping plant salt tolerance. Trends Plant Sci. 2023;28(5):552–566.

90

Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J. Crop Phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol Plant. 2020;13(2):187–214.

91
Lemaire S, Maupas F, Cournède P-H, de Reffye P. A morphogenetic crop model for sugar-beet (Beta vulgaris L.). In: Cao W, White JW, Wang E, editors. Crop modeling and decision support. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 116–129.
92

Feng L, Mailhol JC, Rey H, Griffon S, Auclair D, de Reffye P. Comparing an empirical crop model with a functional structural plant model to account for individual variability. Eur J Agron. 2014;53:16–27.

93

Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, de Reffye P. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc Natl Acad Sci USA. 2014;111(39):E4127.

94

Wang X, Kang M, Hua J, de Reffye P. From stand to organ level—A trial of connecting DSSAT and GreenLab crop model through data. Smart Agric. 2021;3(2):77–87.

95

Jeong S, Ko J, Yeom J-M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Sci Total Environ. 2022;802:149726.

96

Feng P, Wang B, Liu DL, Waters C, Xiao D, Shi L, Yu Q. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agric For Meteorol. 2020;285-286:107922.

97

Chen Y, Tao F. Potential of remote sensing data-crop model assimilation and seasonal weather forecasts for early-season crop yield forecasting over a large area. Field Crop Res. 2022;276:108398.

98

Kang F, Cournéde P-H, Lecoeur J, Letort V. SUNLAB: A functional-structural model for genotypic and phenotypic characterization of the sunflower crop. Ecol Model. 2014;290:21–33.

99

Kang M, Evers JB, Vos J, de Reffye P. The derivation of sink functions of wheat organs using the GREENLAB model. Ann Bot. 2008;101(8):1099–1108.

100
Song Y, Luquet D, Mathieu A, de Reffye P, Dingkuhn M. Using greenlab model to assist to analyse rice morphogenesis: Case of Phyllo mutant and its wild type ‘Nippon Bare’. In: Proceedings of the PMA 2006: Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Beijing, China: IEEE; 2006. p. 169.
101
Zheng B, Ma Y, Li B, Guo Y, Deng Q. Assessment of the effects of leaf angle combinations on potential photosynthesis capacity of rice with 3-D models using high performance computing. Paper presented at: 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications; 2009 Nov. 9 to 13; Beijing, China.
102

de Reffye P, Blaise F, Chemouny S, Jaffuel S, Fourcaud T, Houllier F. Calibration of a hydraulic architecture-based growth model of cotton plants. Agronomie, 1999;19(3-4):265-280.

103
Zhan Z, Rey H, Li D, Guo Y, Cournède P-H, de Reffye P. Study on the effects of defoliation on the growth of cotton plant using the functional structural model GREENLAB. In: Fourcaud T, Zhang XP, editors. Proceedings of the PMA 2006: Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Beijing, China: IEEE; 2006. p. 194.
104
Li D, Letort V, Guo Y, de Reffye P, Zhan Z. Modeling branching effects on source-sink relationships of the cotton plant. Paper presented at: International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications; 2009; Beijing, China.
105

Dong Q, Louarn G, Wang Y, Barczi JF, de Reffye P. Does the structure-function model GREENLAB deal with crop phenotypic plasticity induced by plant spacing? A case study on tomato. Ann Bot. 2008;101(8):1195–1206.

106
Zhang B, Kang M, Letort V, Wang X, de Reffye P. Comparison between empirical or functional sinks of organs—Application on tomato plant. Paper presented at: 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications; Beijing; 2009 Nov. 9–13. p. 191–197.
107

Mathieu A, Letort V, Cournède P-H, Zhang BG, Heuret P, de Reffye P. Oscillations in functional structural plant growth models. Math Model Natur Phenom. 2012;7(6):47–66.

108

Ma Y, Zhu J, Hu B-G, Heuvelink E, de Reffye P. Simulation of spatial and temporal variation of fruit set patterns on pepper plant based on ‘source-sink’ theory. Acta Ecologica Sinica. 2010;30(24):7072–7078.

109
Ma Y, Mathieu A, Wubs AM, Heuvelink E, Zhu J, Hu B-G, Cournède PH, de Reffye P. Parameter estimation and growth variation analysis in six capsicum cultivars with the functional-structural model GreenLab. Paper presented at: 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications; 2009 Nov. 9 to 13; Beijing, China.
110
Letort V, Sabatier S, Akaffou S, Hamon S, Hamon P, de Reffye P. Interspecific variability of biomass production of young coffea: No influence of branch pruning. Experimental evidence and theoretical analysis. Paper presented at: 2012 IEEE Fourth International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications; 2012; Shanghai, China.
111

Okoma P, Akaffou S, de Reffye P, Hamon P, Hamon S, Konan O, Kouassi KH, Legnate H, Letort V, Sabatier S. Estimation of stem and leaf dry biomass using a non-destructive method applied to African Coffea species. Agrofor Syst. 2016;92(3):667–675.

112

Guo H, Lei X-D, Letort V, Lu Y-C, de Reffye P. A Functional-Structural Model GreenLab for Pinus Tabulaeformis. Acta Phytoecologica Sinica. 2009;33(5):950–957.

113
Guo H, Lu Y, Diao J, Letort V, de Reffye P. Source-sink relationships vary with age in Chinese pine (Pinus tabulaeformis Carr.): Analysis using the GreenLab model. Paper presented at: 2012 IEEE Fourth International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications; 2012; Shanghai, China.
Plant Phenomics
Article number: 0118
Cite this article:
Wang X, Hua J, Kang M, et al. Functional–Structural Plant Model “GreenLab”: A State-of-the-Art Review. Plant Phenomics, 2024, 6: 0118. https://doi.org/10.34133/plantphenomics.0118

272

Views

9

Crossref

7

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 23 April 2023
Accepted: 04 November 2023
Published: 07 February 2024
© 2024 Xiujuan Wang et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return