AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

GenoDrawing: An Autoencoder Framework for Image Prediction from SNP Markers

Federico Jurado-Ruiz1David Rousseau2Juan A. Botía3Maria José Aranzana1,4( )
Center for Research in Agricultural Genomics (CRAG), 08193 Barcelona, Cerdanyola, Spain
Université d’Angers, LARIS, INRAe UMR IRHS, 49000 Angers, France
Department of Information and Communication Engineering, University of Murcia, 30071 Murcia, Spain
IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
Show Author Information

Abstract

Advancements in genome sequencing have facilitated whole-genome characterization of numerous plant species, providing an abundance of genotypic data for genomic analysis. Genomic selection and neural networks (NNs), particularly deep learning, have been developed to predict complex traits from dense genotypic data. Autoencoders, an NN model to extract features from images in an unsupervised manner, has proven to be useful for plant phenotyping. This study introduces an autoencoder framework, GenoDrawing, for predicting and retrieving apple images from a low-depth single-nucleotide polymorphism (SNP) array, potentially useful in predicting traits that are difficult to define. GenoDrawing demonstrates proficiency in its task using a small dataset of shape-related SNPs. Results indicate that the use of SNPs associated with visual traits has substantial impact on the generated images, consistent with biological interpretation. While using substantial SNPs is crucial, incorporating additional, unrelated SNPs results in performance degradation for simple NN architectures that cannot easily identify the most important inputs. The proposed GenoDrawing method is a practical framework for exploring genomic prediction in fruit tree phenotyping, particularly beneficial for small to medium breeding companies to predict economically substantial heritable traits. Although GenoDrawing has limitations, it sets the groundwork for future research in image prediction from genomic markers. Future studies should focus on using stronger models for image reproduction, SNP information extraction, and dataset balance in terms of phenotypes for more precise outcomes.

References

1

Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, et al. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet. 2016;7:221.

2

Zhao Y, Mette MF, Gowda M, Longin CFH, Reif J. Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity. 2014;112(6):638–645.

3

Zhang H, Yin L, Wang M, Yuan X, Liu X. Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations. Front Genet. 2019;10:189.

4

Iwata H, Ebana K, Uga Y, Hayashi T. Genomic prediction of biological shape: Elliptic Fourier analysis and kernel partial least squares (PLS) regression applied to grain shape prediction in rice (Oryza sativa L.). PLoS One. 2015;10(3):e0120610.

5

Pérez-Enciso M, Zingaretti LM. A guide on deep learning for complex trait genomic prediction. Genes. 2019;10(7):553.

6

Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for computer vision: A brief review. Comput Intell Neurosci. 2018;2018:7068349.

7

Osval AM-L, Abelardo M-L, Tuberosa R, Maccaferri M, Sciara G, Ammar K, Crossa J. Multitrait, multi-environment genomic prediction of durum wheat with genomic best linear unbiased predictor and deep learning methods. Front Plant Sci. 2019;10:1131.

8

van Klompenburg, Kassahun A, Catal C. Crop yield prediction using machine learning: A systematic literature review. Comput Electron Agric. 2020;177:105709.

9

Abdollahi-Arpanahi R, Gianola D, Peñagaricano F. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes. Genet Sel Evol. 2020;52:12.

10
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al. PyTorch: An imperative style, high-performance deep learning library. Paper presented at: NIPS'19. Proceedings of the 33rd International Conference on Neural Information Processing Systems; 2019 December 8; Vancouver, Canada.
11
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G, Davis A, Dean J, Devin M, et al. TensorFlow: Large-scale machine learning on heterogeneous systems. ArXiv. 2016. https://doi.org/10.48550/arXiv.1603.04467.
12

Harshvardhan GM, Gourisaria MK, Pandey M, Rautaray SS. A comprehensive survey and analysis of generative models in machine learning. Comput Sci Rev. 2020;38:8026–8037.

13

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Commun ACM. 2020;63:139–144.

14
Rombach R, Blattmann A, Lorenz D, EsserP, Ommer B. High-resolution image synthesis with latent diffusion models. Paper presented at: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2022; New Orleans, LA, USA.
15
Pinaya WHL, Vieira S, Garcia-Dias R, Mechelli A. Chapter 11-Autoencoders. In: Mechelli A, Vieira S, editors. Machine learning. Methods and applications to brain disorders. Cambridge (MA): Academic Press; 2020. pp. 193–208.
16

Mourot L, Hoyet L, Le Clerc F, Schnitzler F, Hellier P. A survey on deep learning for skeleton-based human animation. Comput Grap Forum. 2022;41(1):122–157.

17

Richards BA, Lillicrap TP, Beaudoin P, Bengio Y, Bogacz R, Christensen A, Clopath C, Costa RP, de Berker, Ganguli S, et al. A deep learning framework for neuroscience. Nat Neurosci. 2019;22(11):1761–1770.

18

Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Wang R, Zhao H, Chong Y, et al. Yuedong Yang “deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images”. IEEE/ACM Trans Comput Biol Bioinform. 2021;18(6):2775–2780.

19

Mochida K, Koda S, Inoue K, Hirayama T, Tanaka S, Nishii R, Melgani F, Melgani F. Computer vision-based phenotyping for improvement of plant productivity: A machine learning perspective. GigaScience. 2018;8(1):giy153.

20

Jangra S, Chaudhary V, Yadav RC, Yadav NR. High-throughput phenotyping: A platform to accelerate crop improvement. Phenomics. 2021;1(2):31–53.

21

Wang X, Xuan H, Evers B, Shrestha S, Pless R, Poland J. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. GigaScience. 2019;8(11):giz120.

22

Saríc R, Nguyen VD, Burge T, Berkowitz O, Trtílek M,Whelan J, Lewsey MG, Čustović E. Applications of hyperspectral imaging in plant phenotyping. Trends Plant Sci. 2022;27(3):301–315.

23
Dujak C, Jurado-Ruiz F, Aranzana AM. Comprehensive morphometric analysis of apple fruits and weighted class assignation using machine learning. Research Square. 2 August 2023. https://doi.org/10.21203/rs.3.rs-2860631/v1.
24

Jung M, Roth M, Aranzana MJ, Auwerkerken A, Bink M, Denancé C, Dujak C, Durel C-E, Font C, Cantin CM, et al. The apple REFPOP—A reference population for genomics-assisted breeding in apple. Hort Res. 2020;7(1):189.

25
He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. Paper presented at: 2017 IEEE International Conference on Computer Vision; 2017 October 22–29; Venice, Italy.
26
Lateur M, Dapena E, Szalatnay D, Gantar ME, Guyader A, Hjalmarsson I, Höfer M, Ikase L, Kellerhals M, Lacis G, et al. ECPGR characterization and evaluation descriptors for apple genetic resources: Apple (Malus X Domestica). European Cooperative Programme for Plant Genetic Resources; 2022. https://www.ecpgr.cgiar.org/resources/latest-news/news-detail/ecpgr-characterization-and-evaluation-descriptors-for-apple-genetic-resources-published.
27

Harris CR, Jarrod Millman K, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, et al. Array programming with NumPy. Nature. 2020;585.

28

Goodfellow I, Bengio Y, Courville A. Deep learning. The MIT Press; 2016.

29
Zhang R, P. Isola, Efros AA, Shechtman E, Wang O. The unreasonable effectiveness of deep features as a perceptual metric. Paper presented at: IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2018 June 18–23; Los Alamitos, CA, USA.
30

Robbins H, Monro S. A stochastic approximation method. Ann Math Stat. 1951; 22: 400–407.

31

Raskutti G, Wainwright MJ, Yu B. Early stopping for non-parametric regression: An optimal data-dependent stopping rule. J Mach Learn Res. 2014;15:335–366.

32
Temel D, AlRegib G. Image quality assessment and color difference. Paper presented at: 2014 IEEE Global Conference on Signal and Information Processing; 2014 December 3–5; Atlanta, GA, USA.
33

Wang Z. Bovik A.C.: Mean squared error: Love it or leave it? A new look at signal Fidelity measures. IEEE Signal Process Mag. 2009;26(1):98–117.

34

Robert JE, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. Plos One. 2011;6(5):e19379.

35

Jung M, Keller B, Roth M, Aranzana MJ, Auwerkerken A, Guerra W, Al-Rifaï M, Lewandowski M, Sanin N, Rymenants M, et al. Genetic architecture and genomic predictive ability of apple quantitative traits across environments. Hort Res. 2022;9:uhac028.

Plant Phenomics
Article number: 0113
Cite this article:
Jurado-Ruiz F, Rousseau D, Botía JA, et al. GenoDrawing: An Autoencoder Framework for Image Prediction from SNP Markers. Plant Phenomics, 2023, 5: 0113. https://doi.org/10.34133/plantphenomics.0113

152

Views

4

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 04 July 2023
Accepted: 23 October 2023
Published: 03 November 2023
© 2023 Federico Jurado-Ruiz et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return