AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Phenotyping of Salvia miltiorrhiza Roots Reveals Associations between Root Traits and Bioactive Components

Junfeng Chen1,Yun Wang2,Peng Di3,Yulong Wu4,Shi Qiu1Zongyou Lv1Yuqi Qiao1Yajing Li1Jingfu Tan5Weixu Chen5Ma Yu6Ping Wei7Ying Xiao1( )Wansheng Chen1,8( )
The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
School of Medicine, Shanghai University, Shanghai 200444, China
State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China
School of Computer Science, Sichuan Normal University, Chengdu 610066, China
Shangyao Huayu (Linyi) Traditional Chinese Resources Co., Ltd., Linyi 276000, China
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
Sichuan Academy of Traditional Chinese Medicine, Chengdu 610041, China
Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China

†These authors contributed equally to this work.

Show Author Information

Abstract

Plant phenomics aims to perform high-throughput, rapid, and accurate measurement of plant traits, facilitating the identification of desirable traits and optimal genotypes for crop breeding. Salvia miltiorrhiza (Danshen) roots possess remarkable therapeutic effect on cardiovascular diseases, with huge market demands. Although great advances have been made in metabolic studies of the bioactive metabolites, investigation for S. miltiorrhiza roots on other physiological aspects is poor. Here, we developed a framework that utilizes image feature extraction software for in-depth phenotyping of S. miltiorrhiza roots. By employing multiple software programs, S. miltiorrhiza roots were described from 3 aspects: agronomic traits, anatomy traits, and root system architecture. Through K-means clustering based on the diameter ranges of each root branch, all roots were categorized into 3 groups, with primary root-associated key traits. As a proof of concept, we examined the phenotypic components in a series of randomly collected S. miltiorrhiza roots, demonstrating that the total surface of root was the best parameter for the biomass prediction with high linear regression correlation (R2 = 0.8312), which was sufficient for subsequently estimating the production of bioactive metabolites without content determination. This study provides an important approach for further grading of medicinal materials and breeding practices.

References

1

Houle D, Govindaraju DR, Omholt S. Phenomics: The next challenge. Nat Rev Genet. 2010;11(12):855–866.

2

Zhang X, Huang C, Wu D, Qiao F, Li W, Duan L, Wang K, Xiao Y, Chen G, Liu Q, et al. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol. 2017;173(3):1554–1564.

3

Zhao C, Zhang Y, Du J, Guo X, Wen W, Gu S, Wang J, Fan J. Crop phenomics: Current status and perspectives. Front Plant Sci. 2019;2019(10):714.

4

Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell. 2014;26(12):4636–4655.

5

Dhondt S, Wuyts N, Inzé D. Cell to whole-plant phenotyping: The best is yet to come. Trends Plant Sci. 2013;18(8):428–439.

6

Sun D, Xu Y, Cen H. Optical sensors: Deciphering plant phenomics in breeding factories. Trends Plant Sci. 2022;27(2):209–210.

7

Topp CN, Benfey PN. Growth control of root architecture. Plant Biotechnol Agricul. 2012;2012(24):373–386.

8

Meena MR, Appunu C, Arun Kumar R, Manimekalai R, Vasantha S, Krishnappa G, Kumar R, Pandey SK, Hemaprabha G. Recent advances in sugarcane genomics, physiology, and Phenomics for superior agronomic traits. Front Genet. 2022;13:Article 854936.

9

Zhang Y, Zha Y, Jin X, Wang Y, Qiao H. Changes in vertical phenotypic traits of Rice (Oryza sativa L.) response to water stress. Front Plant Sci. 2022;13:Article 942110.

10

Ma X, Meng Y, Wang P, Tang Z, Wang H, Xie T. Bioinformatics-assisted, integrated omics studies on medicinal plants. Brief Bioinform. 2020;21(6):1857–1874.

11

Kuijken RC, van Eeuwijk FA, Marcelis LF, Bouwmeester HJ. Root phenotyping: From component trait in the lab to breeding. J Exp Bot. 2015;66(18):5389–5401.

12

Yazdanbakhsh N, Fisahn J. High-throughput phenotyping of root growth dynamics. Methods Mol Biol. 2012;918:21–40.

13

Lombardi M, De Gara L, Loreto F. Determinants of root system architecture for future-ready, stress-resilient crops. Physiol Plant. 2021;172(4):2090–2097.

14

Ranjan A, Sinha R, Singla-Pareek SL, Pareek A, Singh AK. Shaping the root system architecture in plants for adaptation to drought stress. Physiol Plant. 2022;174(2):Article e13651.

15
Zhao H, Han B, Li X, Sun C, Zhai Y, Li M, Jiang M, Zhang W, Liang Y, Kai G. Salvia miltiorrhiza in breast cancer treatment: A review of its phytochemistry, derivatives, nanoparticles, and potential mechanisms. Front Pharmacol. 2022;13:Article 872085.
16

Tong Q, Zhang C, Tu Y, Chen J, Li Q, Zeng Z, Wang F, Sun L, Huang D, Li M, et al. Biosynthesis-based spatial metabolome of salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging. Talanta. 2022;238(Pt 2):Article 123045.

17

Liu M, Sun W, Ma Z, Guo C, Chen J, Wu Q, Wang X, Chen H. Integrated network analyses identify MYB4R1 neofunctionalization in the UV-B adaptation of tartary buckwheat. Plant Commun. 2022;3(6):Article 100414.

18

Shi M, Zhu R, Zhang Y, Zhang S, Liu T, Li K, Liu S, Wang L, Wang Y, Zhou W, et al. A novel WRKY34-bZIP3 module regulates phenolic acid and tanshinone biosynthesis in Salvia miltiorrhiza. Metab Eng. 2022;73:182–191.

19
Zhou Y, Feng J, Li Q, Huang D, Chen X, Du Z, Lv Z, Xiao Y, Han Y, Chen J, et al. SmMYC2b enhances tanshinone accumulation in Salvia miltiorrhiza by activating pathway genes and promoting lateral root development. Front Plant Sci. 2020;11:Article 559438.
20

Tatongjai S, Kraichak E, Kermanee P. Comparative anatomy and salt management of Sonneratia caseolaris (L.) Engl. (Lythraceae) grown in saltwater and freshwater. PeerJ. 2021;9:Article e10962.

21
Bingham IJ, Baddeley JA, Watson CA. Development and evaluation of technique for the rapid measurement of cereal root systems. HGCA project no. 257. London: Home Grown Cereals Authority; 2001.
22

Seethepalli A, Dhakal K, Griffiths M, Guo H, Freschet GT, York LM. RhizoVision explorer: Open-source software for root image analysis and measurement standardization. AoB Plants. 2021;13(6):plab056.

23
Burton AL, Williams M, Lynch JP, Brown KM. RootScan: Software for high-throughput analysis of root anatomical traits. Plant Soil. 2012;357(1):189–203.
24

Ristova D, Rosas U, Krouk G, Ruffel S, Birnbaum KD, Coruzzi GM. RootScape: A landmark-based system for rapid screening of root architecture in Arabidopsis. Plant Physiol. 2013;161(3):1086–1096.

25

Xu Z, York LM, Seethepalli A, Bucciarelli B, Cheng H, Samac DA. Objective phenotyping of root system architecture using image augmentation and machine learning in alfalfa (Medicago sativa L.). Plant Phenomics. 2022;2022:9879610.

26

Lu W, Gao S, Xiao Y, Zhang L, Chen J, Li Q, Chen W. A liquid chromatographic–tandem mass spectrometric method for the quantitation of eight components involved in lithospermic acid B biosynthesis pathway in Salvia miltiorrhiza hairy root cultures. J Med Plant Res. 2011;5(9):1664–1672.

27

Neveu P, Tireau A, Hilgert N, Nègre V, Mineau-Cesari J, Brichet N, Chapuis R, Sanchez I, Pommier C, Charnomordic B, et al. Dealing with multi-source and multi-scale information in plant phenomics: The ontology-driven phenotyping hybrid information system. New Phytol. 2019;221(1):588–601.

28

Arsenault JL, Poulcur S, Messier C, Guay R. WinRHlZO™, a root-measuring system with a unique overlap correction method. HortScience. 1995;30(4):906D–906D.

29

McCormack ML, Guo D, Iversen CM, Chen W, Eissenstat DM, Fernandez CW, Li L, Ma C, Ma Z, Poorter H, et al. Building a better foundation: Improving root-trait measurements to understand and model plant and ecosystem processes. New Phytol. 2017;215(1):27–37.

30

Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma XF, York LM. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. New Phytol. 2021;232(1):98–112.

31

Morris EC, Griffiths M, Golebiowska A, Mairhofer S, Burr-Hersey J, Goh T, von Wangenheim D, Atkinson B, Sturrock CJ, Lynch JP, et al. Shaping 3D root system architecture. Curr Biol. 2017;27(17):R919–R930.

32

Teramoto S, Tanabata T, Uga Y. RSAtrace3D: Robust vectorization software for measuring monocot root system architecture. BMC Plant Biol. 2021;21(1):398.

33

Kerke SJ, Engelenhoven T, Es AL, Schat L, Son LM, Vink S, Hemerik L, Velzen R, Schranz ME, Bakker FT. Capturing variation in floral shape: A virtual 3D based morphospace for pelargonium. PeerJ. 2020;8:Article e8823.

34

Artuso S, Gamisch A, Staedler YM, Schönenberger J, Comes HP. Evidence for selectively constrained 3D flower shape evolution in a Late Miocene clade of Malagasy Bulbophyllum orchids. New Phytol. 2021;232(2):853–867.

35

Griffiths M, Delory BM, Jawahir V, Wong KM, Bagnall GC, Dowd TG, Nusinow DA, Miller AJ, Topp CN. Optimisation of root traits to provide enhanced ecosystem services in agricultural systems: A focus on cover crops. Plant Cell Environ. 2022;45(3):751–770.

36

Liu S, Wang Y, Shi M, Maoz I, Gao X, Sun M, Yuan T, Li K, Zhou W, Guo X, et al. SmbHLH60 and SmMYC2 antagonistically regulate phenolic acids and anthocyanins biosynthesis in Salvia miltiorrhiza. J Adv Res. 2022;42:205–219.

37

Lakshmanan P, Luo T, Liu XY. A combined genomics and phenomics approach is needed to boost breeding in sugarcane. Plant Phenomics. 2023;5:0074.

38

Kim Y, Chung YS, Lee E, Tripathi P, Heo S, Kim KH. Root response to drought stress in Rice (Oryza sativa L.). Int J Mol Sci. 2020;21(4):1513.

39

Dodig D, Božinović S, Nikolić A, Zorić M, Vančetović J, Ignjatović-Micić D, Delić N, Weigelt-Fischer K, Junker A, Altmann T. Image-derived traits related to mid-season growth performance of maize under nitrogen and water stress. Front Plant Sci. 2019;10:814.

40

Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, Xu J, Li Y, Song C, Wang B, et al. Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant. 2016;9(6):949–952.

41

Song Z, Lin C, Xing P, Fen Y, Jin H, Zhou C, Gu YQ, Wang J, Li X. A high-quality reference genome sequence of Salvia miltiorrhiza provides insights into tanshinone synthesis in its red rhizomes. Plant Genome. 2020;13(3):Article e20041.

42

Ma Y, Cui G, Chen T, Ma X, Wang R, Jin B, Yang J, Kang L, Tang J, Lai C, et al. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nat Commun. 2021;12(1):685.

Plant Phenomics
Article number: 0098
Cite this article:
Chen J, Wang Y, Di P, et al. Phenotyping of Salvia miltiorrhiza Roots Reveals Associations between Root Traits and Bioactive Components. Plant Phenomics, 2023, 5: 0098. https://doi.org/10.34133/plantphenomics.0098

184

Views

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 30 March 2023
Accepted: 05 September 2023
Published: 02 October 2023
© 2023 Junfeng Chen et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return