Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the concept of sustainable management of plantations, individual trees with excellent characteristics in plantations have received attention from breeders. To improve and maintain long-term productivity, accurate and high-throughput access to phenotypic characteristics is essential when establishing breeding strategies. Meanwhile, genetic diversity is also an important issue that must be considered, especially for plantations without seed source information. This study was carried out in a ginkgo timber plantation. We used simple sequence repeat (SSR) markers for genetic background analysis and high-density terrestrial laser scanning for growth structural characteristic extraction, aiming to provide a possibility of applying remote sensing approaches for forest breeding. First, we analyzed the genetic diversity and population structure, and grouped individual trees according to the genetic distance. Then, the growth structural characteristics (height, diameter at breast height, crown width, crown area, crown volume, height to living crown, trunk volume, biomass of all components) were extracted. Finally, individual trees in each group were comprehensively evaluated and the best-performing ones were selected. Results illustrate that terrestrial laser scanning (TLS) point cloud data can provide nondestructive estimates of the growth structural characteristics at fine scale. From the ginkgo plantation containing high genetic diversity (average polymorphism information content index was 0.719) and high variation in growth structural characteristics (coefficient of variation ranged from 21.822% to 85.477%), 11 excellent individual trees with superior growth were determined. Our study guides the scientific management of plantations and also provides a potential for applying remote sensing technologies to accelerate forest breeding.
Wulder M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Prog Phys Geogr Earth Environ. 1998;22(4):449–476.
Li J, Zhou A, Liao Y, Zhao Z, Mao X, Zhang S. Forest ecological diversity change prediction discrete dynamic model. Discret Dyn Nat Soc. 2022;119(28):e2202190119.
Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers Conserv. 2008;17(5):925–951.
Lin HY, Li WH, Lin CF, Wu HR, Zhao YP. International biological Flora: Ginkgo biloba. J Ecol. 2022;110(4):951–982.
Liu H, Wang X, Wang G, Cui P, Wu S, Ai C, Hu N, He B, Shao X, Wu Z, et al. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nat Plants. 2021;7(6):748–756.
Liu K, Shen X, Cao L, Wang G, Cao F. Estimating forest structural attributes using UAV-LiDAR data in ginkgo plantations. ISPRS J Photogramm Remote Sens. 2018;146:465–482.
Zhou T, Yang X, Fu F, Wang G, Cao F. Selection of suitable reference genes based on transcriptomic data in Ginkgo biloba under different experimental conditions. Forests. 2020;11(11):1217.
Androsiuk P, Shimono A, Westin J, Lindgren D, Fries A, Wang XR. Genetic status of Norway spruce (Picea abies) breeding populations for northern Sweden. Silvae Genet. 2013;62(3):127–136.
Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W. Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—Range, abundance, genetic diversity and adaptive response. For Ecol Manage. 2010;259(11):2213–2222.
Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci. 2007;173(6):638–649.
Mattioni C, Martin MA, Cherubini M, Taurchini D, Villani F. Genetic diversity in European chestnut populations. Acta Hortic. 2010;866(5):163–167.
Maghuly F, Pinsker W, Praznik W, Fluch S. Genetic diversity in managed subpopulations of Norway spruce Picea abies (L.) karst. For Ecol Manag. 2006;222(1–3):266–271.
Gao S, Zhang Z, Cao L. Individual tree structural parameter extraction and volume table creation based on near-field lidar data: A case study in a subtropical planted forest. Sensors. 2021;21(23):8162.
Zhou Q, Mu K, Ni Z, Liu X, Li Y, Lan X. Analysis of genetic diversity of ancient ginkgo populations using SSR markers. Ind Crop Prod. 2020;145:111942.
Pieruschka R, Poorter H. Phenotyping plants: Genes, phenes and machines. Funct Plant Biol. 2012;39(11):813–820.
Huang Y, Ren Z, Li D, Liu X. Phenotypic techniques and applications in fruit trees: A review. Plant Methods. 2020;16(1):1–22.
Liao L, Cao L, Xie Y, Luo J, Wang G. Phenotypic traits extraction and genetic characteristics assessment of eucalyptus trials based on UAV-borne LiDAR and RGB images. Remote Sens. 2022;14(3):765.
Fu X, Zhang Z, Cao L, Coops NC, Goodbody TRH, Liu H, Shen X, Wu X. Assessment of approaches for monitoring forest structure dynamics using bi-temporal digital aerial photogrammetry point clouds. Remote Sens Environ. 2021;255:112300.
du Toit F, Coops NC, Tompalski P, Goodbody TRH, El-Kassaby YA, Stoehr M, Turner D, Lucieer A. Characterizing variations in growth characteristics between Douglas-fir with different genetic gain levels using airborne laser scanning. Trees. 2020;34(3):649–664.
Yang X, Strahler AH, Schaaf CB, Jupp DLB, Yao T, Zhao F, Wang Z, Culvenor DS, Newnham GJ, Lovell JL, et al. Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (echidna®). Remote Sens Environ. 2013;135:36–51.
van Leeuwen M, Nieuwenhuis M. Retrieval of forest structural parameters using LiDAR remote sensing. Eur J For Res. 2010;129(4):749–770.
Comesaña-Cebral L, Martínez-Sánchez J, Lorenzo H, Arias P. Individual tree segmentation method based on mobile backpack LiDAR point clouds. Sensors. 2021;21(18):6007.
Wulder MA, White JC, Nelson RF, Naesset E, Orka HO, Coops NC, Hilker T, Bater CW, Gobakken T. Lidar sampling for large-area forest characterization: A review. Remote Sens Environ. 2012;121:196–209.
Parker GG, Harmon ME, Lefsky MA, Chen J, Pelt RV, Weis SB, Thomas SC, Winner WE, Shaw DC, Frankling JF. Three-dimensional structure of an old-growth Pseudotsuga-Tsuga canopy and its implications for radiation balance, microclimate, and gas exchange. Ecosystems. 2004;7(5):440–453.
Peakall R, Smouse PE. GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288–295.
Marra FP, Caruso T, Costa F, Di Vaio C, Mafrica R, Marchese A. Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in southern Italy revealed by SSR markers. Tree Genet Genomes. 2013;9(4):961–973.
Letunic I, Bork P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242–W245.
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol. 2005;14(8):2611–2620.
Earl DA, VonHoldt BM. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4(2):359–361.
Jakobsson M, Rosenberg NA. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23(14):1801–1806.
Rosenberg NA. DISTRUCT: A program for the graphical display of population structure. Mol Ecol Notes. 2004;4(1):137–138.
Zhao X, Guo Q, Su Y, Xue B. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS J Photogramm Remote Sens. 2016;117:79–91.
Tao S, Wu F, Guo Q, Wang Y, Li W, Xue B, Hu X, Li P, Tian D, Li C, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories. ISPRS J Photogramm Remote Sens. 2015;110:66–76.
Liu K, Cao L, Bin Wang G, Cao FL. Biomass allocation patterns and allometric models of Ginkgo biloba. J Beijing For Univ. 2017;39(4):12–20.
Fan G, Nan L, Dong Y, Su X, Chen F. AdQSM: A new method for estimating above-ground biomass from TLS point clouds. Remote Sens. 2020;12(18):3089.
Bengio Y, Grandvalet Y. No unbiased estimator of the variance of K-fold cross-validation. J Mach Learn Res. 2004;5:1089–1105.
de Aguiar Silvestre E. A note on the distribution of genetic diversity of Anglo-Nubian goats in central-northern farms of Piauí, Brazil. Rev Bras Zootec. 2015;44(4):155–160.
Wu Y, Zhou Q, Huang S, Wang G, Xu L. SNP development and diversity analysis for Ginkgo biloba based on transcriptome sequencing. Trees. 2019;33(2):587–597.
Fan X-X, Shen L, Zhang X, Chen X-Y, Fu C-X. Assessing genetic diversity of Ginkgo biloba L. (Ginkgoaceae) populations from China by RAPD markers. Biochem Genet. 2004;42(7):269–278.
Balfourier F, Imbert C, Charmet G. Evidence for phylogeographic structure in Lolium species related to the spread of agriculture in Europe. A cpDNA study. Theor Appl Genet. 2000;101(1):131–138.
Zhou Z, Zheng S. The missing link in ginkgo evolution. Nature. 2003;423(6942):821–822.
Tang H, Xing S, Li J, Wang X, Sun L, Du S, Liu X. Genetic diversity of Ginkgo biloba half-sib families based on AFLP technology. Biochem Syst Ecol. 2016;68:58–65.
Liang X, Kukko A, Hyyppä J, Lehtomäki M, Pyörälä J, Yu X, Kaartinen H, Jaakkola A, Wang Y. In-situ measurements from mobile platforms: An emerging approach to address the old challenges associated with forest inventories. ISPRS J Photogramm Remote Sens. 2018;143:97–107.
Sun J, Wang P, Gao Z, Liu Z, Li Y, Gan X, Liu Z. Wood–leaf classification of tree point cloud based on intensity and geometric information. Remote Sens. 2021;13(20):2050.
Wilkes P, Disney M, Vicari MB, Calders K, Burt A. Estimating urban above ground biomass with multi-scale LiDAR. Carbon Balance Manag. 2018;13(1):10.
Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 2005;145(1):87–99.
Muukkonen P. Generalized allometric volume and biomass equations for some tree species in Europe. Eur J For Res. 2007;126(2):157–166.
Kükenbrink D, Gardi O, Morsdorf F, Thürig E, Schellenberger A, Mathys L. Above-ground biomass references for urban trees from terrestrial laser scanning data. Ann Bot. 2021;128(6):709–724.
Fekry R, Yao W, Cao L, Shen X. Ground-based/UAV-LiDAR data fusion for quantitative structure modeling and tree parameter retrieval in subtropical planted forest. For Ecosyst. 2022;9:100065.
Dalla Corte AP, de Vasconcellos BN, Rex FE, Sanquetta CR, Mohan M, Silva CA, Klauberg C, de Almeida DRA, Zambrano AMA, Trautenmuller JW, et al. Applying high-resolution UAV-LiDAR and quantitative structure modelling for estimating tree attributes in a crop-livestock-Forest system. Land. 2022;11(4):507.
de Tanago JG, Lau A, Bartholomeus H, Herold M, Avitabile V, Raumonen P, Martius C, Goodman RC, Disney M, Manuri S, et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol Evol. 2018;9(2):223–234.
Kaya Z, Sewell MM, Neale DB. Identification of quantitative trait loci influencing annual height-and diameter-increment growth in loblolly pine (Pinus taeda L.). Theor Appl Genet. 1999;98(3–4):586–592.
Rae AM, Tricker PJ, Bunn SM, Taylor G. Adaptation of tree growth to elevated CO2: Quantitative trait loci for biomass in Populus. New Phytol. 2007;175(1):59–69.
Xu Y, Crouch JH. Marker-assisted selection in plant breeding: From publications to practice. Crop Sci. 2008;48(2):391–407.
Gao W, Qiu Q, Yuan CY, Shen X, Cao FL, Wang GB, Wang GY. Forestry big data: A review and bibliometric analysis. Forests. 2022;13(10):1549.
Holopainen M, Vastaranta M, Hyyppä J. Outlook for the next generation’s precision forestry in Finland. Forests. 2014;5(7):1682–1694.
Furbank RT, Tester M. Phenomics—Technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16(12):635–644.
Scholes JD, Rolfe SA. Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: A phenomics perspective. Funct Plant Biol. 2009;36(11):880–892.
Allevato E, Saulino L, Cesarano G, Chirico B, D’Urso G, Falanga Bolognesi S, Rita A, Rossi S, Saracino A, Bonanomi G. Canopy damage by spring frost in European beech along the Apennines: Effect of latitude, altitude and aspect. Remote Sens Environ. 2019;225:431–440.
Chaerle L, Lenk S, Leinonen I, Jones HG, Van Der Straeten D, Buschmann C. Multi-sensor plant imaging: Towards the development of a stress-catalogue. Biotechnol J. 2009;4(8):1152–1167.
Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).