AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Crop/Plant Modeling Supports Plant Breeding: Ⅱ. Guidance of Functional Plant Phenotyping for Trait Discovery

Pengpeng Zhang1,Jingyao Huang1,Yuntao Ma2Xiujuan Wang3Mengzhen Kang3Youhong Song1,4( )
School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province 230036, China
College of Land Science and Technology, China Agricultural University, Beijing 100094, China
The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4350, Australia

†These authors contributed equally to this work.

Show Author Information

Abstract

Observable morphological traits are widely employed in plant phenotyping for breeding use, which are often the external phenotypes driven by a chain of functional actions in plants. Identifying and phenotyping inherently functional traits for crop improvement toward high yields or adaptation to harsh environments remains a major challenge. Prediction of whole-plant performance in functional–structural plant models (FSPMs) is driven by plant growth algorithms based on organ scale wrapped up with micro-environments. In particular, the models are flexible for scaling down or up through specific functions at the organ nexus, allowing the prediction of crop system behaviors from the genome to the field. As such, by virtue of FSPMs, model parameters that determine organogenesis, development, biomass production, allocation, and morphogenesis from a molecular to the whole plant level can be profiled systematically and made readily available for phenotyping. FSPMs can provide rich functional traits representing biological regulatory mechanisms at various scales in a dynamic system, e.g., Rubisco carboxylation rate, mesophyll conductance, specific leaf nitrogen, radiation use efficiency, and source–sink ratio apart from morphological traits. High-throughput phenotyping such traits is also discussed, which provides an unprecedented opportunity to evolve FSPMs. This will accelerate the co-evolution of FSPMs and plant phenomics, and thus improving breeding efficiency. To expand the great promise of FSPMs in crop science, FSPMs still need more effort in multiscale, mechanistic, reproductive organ, and root system modeling. In summary, this study demonstrates that FSPMs are invaluable tools in guiding functional trait phenotyping at various scales and can thus provide abundant functional targets for phenotyping toward crop improvement.

References

1

Rangarajan H, Lynch JP. A comparative analysis of quantitative metrics of root architecture. Plant Phenomics. 2021;2021:Article 6953197.

2

Fu P, Montes CM, Siebers MH, Gomez-Casanovas N, McGrath JM, Ainsworth EA, Benacchi CJ. Advances in field-based high-throughput photosynthetic phenotyping. J Exp Biol. 2022;73(10):3157–3172.

3

Roell MS, Zurbriggen MD. The impact of synthetic biology for future agriculture and nutrition. Curr Opin Biotechnol. 2020;61:102–109.

4

Hickey LT, Robinson H, Jackson SA, Leal-Bertoli SCM, Tester M, Gao C, Godwin ID, BJ H, BBH W. Breeding crops to feed 10 billion. Nat Biotechnol. 2019;37(7):744–754.

5

Pixley KV, Falck-Zepeda JB, Paarlberg RL, Phillips PWB, Slamet-Loedin IH, Dhugga KS, Campos H, Gutterson N. Genome-edited crops for improved food security of smallholder farmers. Nat Genet. 2022;54(4):364–367.

6

Hammer GL, Cooper M, Reynolds MP. Plant production in water-limited environments. J Exp Bot. 2021;72(14):5097–5101.

7

Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI. Genetic strategies for improving crop yields. Nature. 2019;575(7781):109–118.

8

Zhu JK. The future of gene-edited crops in China. Natl Sci Rev. 2022;9(4):nwac063.

9

Gao C. Genome engineering for crop improvement and future agriculture. Cell. 2021;184(6):1621–1635.

10

Crossa J, Fritsche-Neto R, Montesinos-Lopez OA, Costa-Neto G, Dreisigacker S, Montesinos-Lopez A, Bentley AR. The modern plant breeding triangle: Optimizing the use of genomics, phenomics, and enviromics data. Front Plant Sci. 2021;12:article 651480.

11

Xu Y, Zhang X, Li H, Zheng H, Zhang J, Olsen MS, Varshney RK, Prasanna BM, Qian Q. Smart breeding driven by big data, artificial intelligence and integrated genomic-enviromic prediction. Mol Plant. 2022;15(11):1664–1695.

12

Deery DM, Jones HG. Field phenomics: Will it enable crop improvement? Plant Phenomics. 2021;2021:Article 9871989.

13

Zhao C, Zhang Y, Du J, Guo X, Wen W, Gu S, Wang J, Fan J. Crop phenomics: Current status and perspectives. Front Plant Sci. 2019;10:00714.

14

Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol Plant. 2020;13(2):187–214.

15

Ninomiya S, Baret F, Cheng ZM. Plant phenomics: Emerging transdisciplinary science. Plant Phenomics. 2019;2019:2764120.

16

Jin X, Zarco-Tejada PJ, Schmidhalter U, Reynolds MP, Hawkesford MJ, Varshney RK. High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geosci Remote Sens Mag. 2021;9(1):200–231.

17

Xu R, Li C. A review of high-throughput field phenotyping systems: Focusing on ground robots. Plant Phenomics. 2022;2022:9760269.

18

Sun D, Robbins K, Morales N, Shu Q, Cen H. Advances in optical phenotyping of cereal crops. Trends Plant Sci. 2022;27(2):191–208.

19

Khush GS. Green revolution: The way forward. Nat Rev Genet. 2001;2(10):815–822.

20

Tian J, Wang C, Xia J, Wu L, Xu G, Wu W. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science. 2019;365(6454):658–664.

21

Mantilla-Perez MB, Bao Y, Tang L, Schnable PS, Salas-Fernandez MG. Toward "smart canopy" sorghum: Discovery of the genetic control of leaf angle across layers. Plant Physiol. 2020;184(4):1927–1940.

22

Grosskinsky DK, Svensgaard J, Christensen S, Roitsch T. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot. 2015;66(18):5429–5440.

23

Jammer A, Akhtar SS, Amby DB, Pandey C, Mekureyaw MF, Bak F. Enzyme activity profiling for physiological phenotyping within functional phenomics: Plant growth and stress responses. J Exp Bot. 2022;73(15):5170–5198.

24

York LM. Functional phenomics: An emerging field integrating high-throughput phenotyping, physiology, and bioinformatics. J Exp Bot. 2019;70(2):379–386.

25

Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma X-F, York LM. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. New Phytol. 2021;232(1):98–112.

26

Negin B, Moshelion M. The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Funct Plant Biol. 2016;44(1):107–118.

27

Li Y, Wu X, Xu W, Sun Y, Wang Y, Li G. High-throughput physiology-based stress response phenotyping: Advantages, applications and prospective in horticultural plants. Horticul Plant J. 2021;7(3):181–187.

28

Ghanem ME, Marrou H, Sinclair TR. Physiological phenotyping of plants for crop improvement. Trends Plant Sci. 2015;20(3):139–144.

29

Roitsch T, Himanen K, Chawade A, Jaakola L, Nehe A, Alexandersson E. Functional phenomics for improved climate resilience in Nordic agriculture. J Exp Bot. 2022;73(15):5111–5127.

30

Sinclair TR, Purcell LC, Sneller CH. Crop transformation and the challenge to increase yield potential. Trends Plant Sci. 2004;9(2):70–75.

31

Furbank RT, Tester M. Phenomics—Technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16(12):635–644.

32

Song Q, Srinivasan V, Long SP, Zhu XG. Decomposition analysis on soybean productivity increase under elevated CO2 using 3-D canopy model reveals synergestic effects of CO2 and light in photosynthesis. Ann Bot. 2020;126(4):601–614.

33

Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. Plant phenomics, from sensors to knowledge. Curr Biol. 2017;27(15):R770–R783.

34

Wu A, Hammer GL, Doherty A, von Caemmerer S, Farquhar GD. Quantifying impacts of enhancing photosynthesis on crop yield. Nature Plants. 2019;5(4):380–388.

35

Zhu XG, Long SP, Ort DR. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol. 2008;19(2):153–159.

36

Gosa SC, Lupo Y, Moshelion M. Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support pre-breeding and plant stress physiology studies. Plant Sci. 2019;282:49–59.

37

Yin X, Struik PC, Goudriaan J. On the needs for combining physiological principles and mathematics to improve crop models. Field Crop Res. 2021;271:Article 108254.

38

Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P, Pantin F, Doliges A, Simonneau T. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci U S A. 2016;113(32):8963–8968.

39

Pang J, Zhao H, Bansal R, Bohuon E, Lambers H, Ryan MH, KHM S. Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. Plant Cell Environ. 2018;41(9):2069–2079.

40

Dhondt S, Wuyts N, Inze D. Cell to whole-plant phenotyping: The best is yet to come. Trends Plant Sci. 2013;18(8):428–439.

41

Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol. 2013;64(1):267–291.

42

Pantazopoulou CK, Bongers FJ, Pierik R. Reducing shade avoidance can improve Arabidopsis canopy performance against competitors. Plant Cell Environ. 2021;44(4):1130–1141.

43

Evers JB, van der Werf W, Stomph TJ, Bastiaans L, Anten NPR. Understanding and optimizing species mixtures using functional-structural plant modelling. J Exp Bot. 2019;70(9):2381–2388.

44

Braghiere RK, Gerard F, Evers JB, Pradal C, Pages L. Simulating the effects of water limitation on plant biomass using a 3D functional-structural plant model of shoot and root driven by soil hydraulics. Ann Bot. 2020;126(4):713–728.

45

Soualiou S, Wang Z, Sun W, de Reffye P, Collins B, Louarn G, Song Y. Functional-structural plant models mission in advancing crop science: Opportunities and prospects. Front Plant Sci. 2021;12:747142.

46

Louarn G, Song Y. Two decades of functional–structural plant modelling: Now addressing fundamental questions in systems biology and predictive ecology. Ann Bot. 2020;126(4):501–509.

47

DeJong TM, Da Silva D, Vos J, Escobar-Gutiérrez AJ. Using functional–structural plant models to study, understand and integrate plant development and ecophysiology. Ann Bot. 2011;108(6):987–989.

48
de Wit CT. Photosynthesis of leaf canopies. Wageningen: Pudoc; 1965.
49

Godin C, Costes E, Sinoquet H. A method for describing plant architecture which integrates topology and geometry. Ann Bot. 1999;84(3):343–357.

50

Honda H. Description of the form of trees by the parameters of the tree-like body: Effects of the branching angle and the branch length on the shape of the tree-like body. J Theor Biol. 1971;31(2):331–338.

51

Ajmera I, Henry A, Radanielson AM, Klein SP, Ianevski A, Bennett MJ. Integrated root phenotypes for improved rice performance under low nitrogen availability. Plant Cell Environ. 2022;45(3):805–822.

52

Zhu XG, Lynch JP, LeBauer DS, Millar AJ, Stitt M, Long SP. Plants in silico: Why, why now and what?—An integrative platform for plant systems biology research. Plant Cell Environ. 2016;39(5):1049–1057.

53

de Reffye P, Hu B, Kang M, Letort V, Jaeger M. Two decades of research with the GreenLab model in agronomy. Ann Bot. 2021;127(3):281–295.

54

Magaia E, Famba S, Wesström I, Brito R, Joel A. Modelling maize yield response to plant density and water and nitrogen supply in a semi-arid region. Field Crop Res. 2017;205:170–181.

55

Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PH. Functional-structural plant modelling: A new versatile tool in crop science. J Exp Bot. 2010;61(8):2101–2115.

56

Muller B, Martre P. Plant and crop simulation models: Powerful tools to link physiology, genetics, and phenomics. J Exp Bot. 2019;70(9):2339–2344.

57

Evers JB, Letort V, Renton M, Kang M. Computational botany: Advancing plant science through functional–structural plant modelling. Ann Bot. 2018;121(5):767–772.

58

de Reffye P, Fourcaud T, Blaise F, Barthelemy D, Houllier F. A functional model of tree growth and tree architecture. Silva Fennica. 1997;31(3):297–311.

59

Luquet D, Soulié JC, Rebolledo MC, Rouan L, Clément-Vidal A, Dingkuhn M. Developmental dynamics and early growth vigour in rice 2. Modelling genetic diversity using Ecomeristem. J Agron Crop Sci. 2012;198(5):385–398.

60

Belmys CC, Gilles V, Valentina B, Zhanwu RLD, Pierre V, Memah M-M, Colombie S, Moing A, Gibon Y, Gerald M. Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species. Ann Bot. 2020;126(3):455–470.

61

Chenu K, Van Oosterom EJ, McLean G, Deifel KS, Fletcher A, Geetika G, Tirfessa A, Mace ES, Jordan DR, Sulman R, et al. Integrating modelling and phenotyping approaches to identify and screen complex traits: Transpiration efficiency in cereals. J Exp Bot. 2018;69(13):3181–3194.

62

Chen J, Beauvoit B, Génard M, Colombié S, Moing A, Vercambre G. Modelling predicts tomatoes can be bigger and sweeter if biophysical factors and transmembrane transports are fine-tuned during fruit development. New Phytol. 2021;230(4):1489–1502.

63

Yin X, Busch FA, Struik PC, Sharkey TD. Evolution of a biochemical model of steady-state photosynthesis. Plant Cell Environ. 2021;44(9):2811–2837.

64

Sweetlove LJ, Williams TCR, Cheung CYM, Ratcliffe RG. Modelling metabolic CO2 evolution—A fresh perspective on respiration. Plant Cell Environ. 2013;36(9):1631–1640.

65

Kang M, Hua J, Wang X, de Reffye P, Jaeger M, Akaffou S. Estimating sink parameters of stochastic functional-structural plant models using organic series-continuous and rhythmic development. Front Plant Sci. 2018;9:01688.

66

Da Silva D, Qin L, DeBuse C, DeJong TM. Measuring and modelling seasonal patterns of carbohydrate storage and mobilization in the trunks and root crowns of peach trees. Ann Bot. 2014;114(4):643–652.

67

Koch A, Meunier F, Vanderborght J, Garré S, Pohlmeier A, Javaux M. Functional–structural root-system model validation using a soil MRI experiment. J Exp Bot. 2019;70(10):2797–2809.

68

Draye X, Kim Y, Lobet G, Javaux M. Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. J Exp Bot. 2010;61(8):2145–2155.

69

Brun F, Richard-Molard C, Pages L, Chelle M, Ney B. To what extent may changes in the root system architecture of Arabidopsis thaliana grown under contrasted homogenous nitrogen regimes be explained by changes in carbon supply? A modelling approach. J Exp Bot. 2010;61(8):2157–2169.

70

De Schepper V, Steppe K. Development and verification of a water and sugar transport model using measured stem diameter variations. J Exp Bot. 2010;61(8):2083–2099.

71

Letort V, Sabatier S, Okoma MP, Jaeger M, de Reffye P. Internal trophic pressure, a regulator of plant development? Insights from a stochastic functional–structural plant growth model applied to Coffea trees. Ann Bot. 2020;126(4):687–699.

72

Evers JB, van der Krol AR, Vos J, Struik PC. Understanding shoot branching by modelling form and function. Trends Plant Sci. 2011;16(9):464–467.

73

de Wit M, Keuskamp DH, Bongers FJ, Hornitschek P, Gommers CMM, Reinen E. Integration of phytochrome and cryptochrome signals determines plant growth during competition for light. Curr Biol. 2016;26(24):3320–3326.

74

Zhou LZ, Juranic M, Dresselhaus T. Germline development and fertilization mechanisms in maize. Mol Plant. 2017;10(3):389–401.

75

Wang F, Yu Z, Zhang M, Wang M, Lu X, Liu X. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnol J. 2022;20(3):526–537.

76

De Souza AP, Burgess SJ, Doran L, Hansen J, Manukyan L, Maryn N. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science. 2022;377(6608):851–854.

77

Zhu X, Zhang G, Tholen D, Wang Y, Xin C, Song Q. The next generation models for crops and agro-ecosystems. Science China Inf Sci. 2011;54(3):589–597.

78

Rebolledo MC, Dingkuhn M, Courtois B, Gibon Y, Clement-Vidal A, Cruz DF, Duitama J, Lorieux M, Luquet D. Phenotypic and genetic dissection of component traits for early vigour in rice using plant growth modelling, sugar content analyses and association mapping. J Exp Bot. 2015;66(18):5555–5566.

79

Buck-Sorlin GH. The search for QTL in barley (Hordeum vulgare L.) using a new mapping population. Cell Mol Biol Lett. 2002;7(2A):523–535.

80

Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F. Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol. 2003;131(2):664–675.

81

Letort V, Mahe P, Cournede PH, de Reffye P, Courtois B. Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Ann Bot. 2008;101(8):1243–1254.

82

Xu L, Henke M, Zhu J, Kurth W, Buck-Sorlin G. A functional-structural model of rice linking quantitative genetic information with morphological development and physiological processes. Ann Bot. 2011;107(5):817–828.

83

Prudent M, Dai ZW, Génard M, Bertin N, Causse M, Vivin P. Resource competition modulates the seed number–fruit size relationship in a genotype-dependent manner: A modeling approach in grape and tomato. Ecol Model. 2014;290:54–64.

84

Gallusci P, Dai Z, Génard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Vile D, Brunel-Muguet S. Epigenetics for plant improvement: Current knowledge and modeling avenues. Trends Plant Sci. 2017;22(7):610–623.

85

Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, Reffye PD, et al. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc Natl Acad Sci U S A. 2014;111(39):E4127–E4136.

86

Song Q, Wang Y, Qu M, Ort DR, Zhu XG. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-development of a new canopy photosynthesis model scaling from metabolism to canopy level processes. Plant Cell Environ. 2017;40(12):2946–2957.

87

Chang T, Honglong Z, Wang N, Song QF, Xiao Y, Qu M, Zhu X-G. A three-dimensional canopy photosynthesis model in rice with a complete description of the canopy architecture, leaf physiology, and mechanical properties. J Exp Bot. 2019;70(9):2479–2490.

88

Chang TG, Shi Z, Zhao H, Song Q, He Z, Van Rie J, Den Boer D, Galle A, Zhu X-G. 3dCAP-wheat: An open-source comprehensive computational framework precisely quantifies wheat foliar, nonfoliar, and canopy photosynthesis. Plant Phenomics. 2022;2022:9758148.

89

Xiao Y, Sloan J, Hepworth C, Fradera-Soler M, Mathers A, Thorley R. Defining the scope for altering rice leaf anatomy to improve photosynthesis: A modelling approach. New Phytol. 2022;237(2):441–453.

90

Retta MA, Ho QT, Yin X, Verboven P, Berghuijs HNC, Struik PC. Exploring anatomical controls of C4 leaf photosynthesis using a 3D reaction-diffusion model. Acta Hortic. 2017;1154:171–178.

91

Zhang Y, Henke M, Buck-Sorlin GH, Li Y, Xu H, Liu X. Estimating canopy leaf physiology of tomato plants grown in a solar greenhouse: Evidence from simulations of light and thermal microclimate using a functional-structural plant model. Agric For Meteorol. 2021;307:Article 108494.

92

Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 1980;149(1):78–90.

93

Sievänen R, Godin C, DeJong TM, Nikinmaa E. Functional–structural plant models: A growing paradigm for plant studies. Ann Bot. 2014;114(4):599–603.

94

Busch FA, Holloway-Phillips M, Stuart-Williams H, Farquhar GD. Revisiting carbon isotope discrimination in C3 plants shows respiration rules when photosynthesis is low. Nat Plants. 2020;6(3):245–258.

95

Wu A, Song Y, van Oosterom EJ, Hammer GL. Connecting biochemical photosynthesis models with crop models to support crop improvement. Front Plant Sci. 2016;7:01518.

96

Bertheloot J, Cournède PH, Andrieu B. NEMA, a functional–structural model of nitrogen economy within wheat culms after flowering. Ⅰ. Model description. Ann Bot. 2011;108(6):1085–1096.

97

Luquet D, Dingkuhn M, Kim H, Tambour L, Clement-Vidal A. EcoMeristem, a model of morphogenesis and competition among sinks in rice. 1. Concept, validation and sensitivity analysis. Funct Plant Biol. 2006;33(4):309–323.

98

Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot. 2011;62(6):1715–1729.

99

Steppe K, Vandegehuchte MW, Van de Wal BAE, Hoste P, Guyot A, Lovelock CE. Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina. Tree Physiol. 2018;38(7):979–991.

100

Coussement JR, De Swaef T, Lootens P, Steppe K. Turgor-driven plant growth applied in a soybean functional–structural plant model. Ann Bot. 2020;126(4):729–744.

101

Pagès L. Links between root developmental traits and foraging performance. Plant Cell Environ. 2011;34(10):1749–1760.

102

Dupuy L, Gregory PJ, Bengough AG. Root growth models: Towards a new generation of continuous approaches. J Exp Bot. 2010;61(8):2131–2143.

103

Zhu XG, Wang Y, Ort DR, Long SP. E-photosynthesis: A comprehensive dynamic mechanistic model of C3 photosynthesis: From light capture to sucrose synthesis. Plant Cell Environ. 2013;36(9):1711–1727.

104

Mao L, Song Q, Li M, Liu X, Shi Z, Chen F. Decreasing photosystem antenna size by inhibiting chlorophyll synthesis: A double-edged sword for photosynthetic efficiency. Crop Environ. 2023;2(1):46–58.

105

Liu F, Hu P, Zheng B, Duan T, Zhu B, Guo Y. A field-based high-throughput method for acquiring canopy architecture using unmanned aerial vehicle images. Agric For Meteorol. 2021;296:108231.

106

Liu S, Martre P, Buis S, Abichou M, Andrieu B, Baret F. Estimation of plant and canopy architectural traits using the D3P digital plant phenotyping platform. Plant Physiol. 2019;181(3):881–890.

107

Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol. 2016;212(1):269–281.

108

Liu S, Baret F, Abichou M, Boudon F, Thomas S, Zhao K. Estimating wheat green area index from ground-based LiDAR measurement using a 3D canopy structure model. Agric For Meteorol. 2017;247:12–20.

109

Tardieu F, Simonneau T, Parent B. Modelling the coordination of the controls of stomatal aperture, transpiration, leaf growth, and abscisic acid: Update and extension of the Tardieu-Davies model. J Exp Bot. 2015;66(8):2227–2237.

110

York LM, Lynch JP. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. J Exp Bot. 2015;66(18):5493–5505.

111

Postma JA, Kuppe C, Owen MR, Mellor N, Griffiths M, Bennett MJ. OpenSimRoot: Widening the scope and application of root architectural models. New Phytol. 2017;215(3):1274–1286.

112

van Eeuwijk FA, Bustos-Korts D, Millet EJ, Boer MP, Kruijer W, Thompson A. Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Sci (Amsterdam, Netherlands). 2019;282:23–39.

113

Picheny V, Casadebaig P, Trepos R, Faivre R, Da Silva D, Vincourt P, Cortes E. Using numerical plant models and phenotypic correlation space to design achievable ideotypes. Plant Cell Environ. 2017;40(9):1926–1939.

114

Rakocevic M, Ribeiro RV, Ribeiro Marchiori PE, Filizola HF, Batista ER. Structural and functional changes in coffee trees after 4 years under free air CO2 enrichment. Ann Bot. 2018;121(5):1065–1078.

115

Kang M, Wang X, Qi R, Jia ZQ, de Reffye P, Huang S. Analyzing and optimizing yield formation of tomato introgression lines using plant model. Euphytica. 2021;217(6):1–17.

116

Drewry DT, Kumar P, Long SP. Simultaneous improvement in productivity, water use, and albedo through crop structural modification. Global Chang Biol. 2014;20(6):1955–1967.

117

Struik PC. Bridging the genotype–phenotype gap in 3D. J Exp Bot. 2016;67(15):4427–4430.

118

Perez RPA, Costes E, Théveny F, Griffon S, Caliman JP, Dauzat J. 3D plant model assessed by terrestrial LiDAR and hemispherical photographs: A useful tool for comparing light interception among oil palm progenies. Agric For Meteorol. 2018;249:250–263.

119

Ninomiya S. High-throughput field crop phenotyping: Current status and challenges. Breed Sci. 2022;72(1):3–18.

120

Evers JB, Vos J, Yin X, Romero P, van der Putten PEL, Struik PC. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. J Exp Bot. 2010;61(8):2203–2216.

121

Ruan YL. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol. 2014;65(1):33–67.

122

Saddhe AA, Manuka R, Penna S. Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiol Plant. 2021;171(4):739–755.

123

Turc O, Bouteille M, Fuad-Hassan A, Welcker C, Tardieu F. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. New Phytol. 2016;212(2):377–388.

124
Messina CD, Hammer GL, McLean G, Cooper M, van Oosterom EJ, Tardieu F. On the dynamic determinants of reproductive failure under drought in maize, Plants. 2019;1(1):diz003.
125

Jagadish SVK. Heat stress during flowering in cereals—Effects and adaptation strategies. New Phytol. 2020;226(6):1567–1572.

126

Richardson AE, Cheng J, Johnston R, Kennaway R, Conlon BR, Rebocho AB, Kong H, Scalon MJ, Hake S, Coen E. Evolution of the grass leaf by primordium extension and petiole-lamina remodeling. Science. 2021;374(6573):1377–1381.

127

Shi W, Li X, Schmidt RC, Struik PC, Yin X, Jagadish SVK. Pollen germination and invivo fertilization in response to high-temperature during flowering in hybrid and inbred rice. Plant Cell Environ. 2018;41(6):1287–1297.

128

Ma Y, Chen Y, Zhu J, Meng L, Guo Y, Li B. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-maize. Ann Bot. 2018;121(5):961–973.

129

Dunbabin VM, Postma JA, Schnepf A, Pagès L, Javaux M, Wu L. Modelling root–soil interactions using three-dimensional models of root growth, architecture and function. Plant Soil. 2013;372(1):93–124.

130

Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol. 2010;152(3):1148–1157.

131

Tisné S, Serrand Y, Bach L, Gilbault E, Ben Ameur R, Balasse H, Voisin R, Bouchez D, Durand-Tardif M, Guerche P, et al. Phenoscope: An automated large-scale phenotyping platform offering high spatial homogeneity. Plant J. 2013;74(3):534–544.

132

Yang W, Guo Z, Huang C, Wang KJ, Jiang N, Feng H, Chen G, Liu Q, Xiong L. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer. J Exp Bot. 2015;66(18):5605–5615.

133

Vergara-Diaz O, Zaman-Allah MA, Masuka B, Hornero A, Zarco-Tejada P, Prasanna BM, Cains JE, Araus JL. A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen fertilization. Front Plant Sci. 2016;7:00666.

134

Anupama A, Bhugra S, Lall B, Chaudhury S, Chugh A. Assessing the correlation of genotypic and phenotypic responses of indica rice varieties under drought stress. Plant Physiol Biochem. 2018;127:343–354.

135

Duan L, Han J, Guo Z, Tu H, Yang P, Zhang D, Fan D, Chen G, Xiong L, Dai M, et al. Novel digital features discriminate between drought resistant and drought sensitive rice under controlled and field conditions. Front Plant Sci. 2018;9:00492.

136

Chintalapati P, Balakrishnan D, Venu Gopal Nammi TV, Javvaji S, Muthusamy SK, Lella Venkata SR, Neelamraju S, Katti G. Phenotyping and genotype × environment interaction of resistance to leaffolder, Cnaphalocrocis medinalis Guenee (Lepidoptera: Pyralidae) in rice. Front Plant Sci. 2019;10:00049.

137

Natarajan S, Basnayake J, Wei X, Lakshmanan P. High-throughput phenotyping of indirect traits for early-stage selection in sugarcane breeding. Remote Sens. 2019;11(24):2952–2969.

138

Singh D, Wang X, Kumar U, Gao L, Noor M, Imtiaz M. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Front Plant Sci. 2019;10:00394.

139

Shu M, Fei S, Zhang B, Yang X, Guo Y, Li B. Application of UAV multisensor data and ensemble approach for high-throughput estimation of maize phenotyping traits. Plant Phenomics. 2022;2022:9802585.

140

Furbank RT, Jimenez-Berni JA, George-Jaeggli B, Potgieter AB, Deery DM. Field crop phenomics: Enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytol. 2019;223(4):1714–1727.

141

Yendrek CR, Tomaz T, Montes CM, Cao Y, Morse AM, Brown PJ. High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiol. 2017;173(1):614–626.

142

Din M, Ming J, Hussain S, Ata-Ul-Karim ST, Rashid MH, Tahir MN. Estimation of dynamic canopy variables using hyperspectral derived vegetation indices under varying N rates at diverse phenological stages of rice. Front Plant Sci. 2019;9:article 01883.

143

Sanaeifar A, Yang C, de la Guardia M, Zhang W, Li X, He Y. Proximal hyperspectral sensing of abiotic stresses in plants. Sci Total Environ. 2023;861:Article 160652.

144

Nie C, Shi L, Li Z, Xu X, Yin D, Li S. A comparison of methods to estimate leaf area index using either crop-specific or generic proximal hyperspectral datasets. Eur J Agron. 2023;142:126664.

145

Kumagai E, Burroughs CH, Pederson TL, Montes CM, Peng B, Kimm H, Guan K, Ainsworth EA, Bernacchi CJ. Predicting biochemical acclimation of leaf photosynthesis in soybean under in-field canopy warming using hyperspectral reflectance. Plant Cell Environ. 2022;45(1):80–94.

146

Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, Walia H. Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiol. 2015;168(4):1476–1489.

147

Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell. 2014;26(12):4636–4655.

148

Rosell JR, Sanz R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput Electron Agric. 2012;81:124–141.

149

Mandal D, Ratha D, Bhattacharya A, Kumar V, McNairn H, Rao YS, Frery AC. A radar vegetation index for crop monitoring using compact polarimetric SAR data. IEEE Trans Geosci Remote Sens. 2020;58(9):6321–6335.

150

Phan H, Le Toan T, Bouvet A. Understanding dense time series of sentinel-1 backscatter from rice fields: Case study in a province of the Mekong Delta, Vietnam. Remote Sens. 2021;13(5):921.

151

Yan H, Dong X, Feng G, Zhang S, Mucciardi A. Coarse root spatial distribution determined using a ground-penetrating radar technique in a subtropical evergreen broad-leaved forest, China. Sci China Life Sci. 2013;56(11):1038–1046.

152

Alani AM, Lantini L. Recent advances in tree root mapping and assessment using non-destructive testing methods: A focus on ground penetrating radar. Surv Geophys. 2020;41(3):605–646.

153

Lin Y. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Comput Electron Agric. 2015;119:61–73.

154

Jin S, Sun X, Wu F, Su Y, Li Y, Song S. Lidar sheds new light on plant phenomics for plant breeding and management: Recent advances and future prospects. ISPRS J Photogramm Remote Sens. 2021;171:202–223.

155

Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Liang X, et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun. 2014;5:5087.

156

Pineros MA, Larson BG, Shaff JE, Schneider DJ, Falcao AX, Yuan L, Clark RT, Craft EJ, Davis TW, Paider P-L, et al. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants. J Integr Plant Biol. 2016;58(3):230–241.

157

Paulus S. Measuring crops in 3D: Using geometry for plant phenotyping. Plant Methods. 2019;15(1):1–13.

158

Garbout A, Munkholm LJ, Hansen SB, Petersen BM, Munk OL, Pajor R. The use of PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant interactions. Plant Soil. 2011;352(1-2):113–127.

159

Hochberg U, Albuquerque C, Rachmilevitch S, Cochard H, David-Schwartz R, Brodersen CR. Grapevine petioles are more sensitive to drought induced embolism than stems: Evidence from invivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation. Plant Cell Environ. 2016;39(9):1886–1894.

160

Mincke J, Courtyn J, Vanhove C, Vandenberghe S, Steppe K. Guide to plant-PET imaging using 11CO2. Front Plant Sci. 2021;12:602550.

161

Gierlinger N, Schwanninger M. The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy. 2007;21(2):69–89.

162

Wu Y, Huang Z, Chen Y, Chen N, Liu D. Recent applications of infrared (IR) and Raman chemical imaging in plant materials. Appl Spectrosc Rev. 2019;54(1):45–56.

163

Yan HP, Kang MZ, De Reffye P, Dingkuhn M. A dynamic, architectural plant model simulating resource-dependent growth. Ann Bot. 2004;93(5):591–602.

164

Fournier C, Andrieu B. ADEL-maize: An L-system based model for the integration of growth processes from the organ to the canopy. Application to regulation of morphogenesis by light availability. Agronomie. 1999;19(3-4):313–327.

165
Fournier C, Andrieu B, Ljutovac S, Saint-Jean S. ADEL-wheat: A 3D architectural model of wheat development. Plant Growth Model Appl. 2003;54–63.
166

Song Y, Birch C, Hanan J. Analysis of maize canopy development under water stress and incorporation into the ADEL-maize model. Funct Plant Biol. 2008;35(10):925–935.

167

He L, Sun W, Chen X, Han L, Li J, Ma Y, Song Y. Modeling maize canopy morphology in response to increased plant density. Front Plant Sci. 2021;11:533514.

168

Drouet JL, Pagès L. GRAAL: A model of GRowth, architecture and carbon ALlocation during the vegetative phase of the whole maize plant: Model description and parameterisation. Ecol Model. 2003;165(2-3):147–173.

169

Chew YH, Seaton DD, Millar AJ. Multi-scale modelling to synergise plant systems biology and crop science. Field Crop Res. 2017;202:77–83.

170

Perttunen J, Änen RS, Nikinmaa E, Salminen H, Saarenmaa H. LIGNUM: A tree model based on simple structural units. Ann Bot. 1996;77(1):87–98.

171

Sievänen R, Raumonen P, Perttunen J, Nikinmaa E, Kaitaniemi P. A study of crown development mechanisms using a shoot-based tree model and segmented terrestrial laser scanning data. Ann Bot. 2018;122(3):423–434.

172

Allen MT, Prusinkiewicz P, DeJong TM. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: The L-PEACH model. New Phytol. 2005;166(3):869–880.

173

Costes E, Smith CJ, Renton M, Guédon Y, Prusinkiewicz P, Godin C. MAppleT: Simulation of apple tree development using mixed stochastic and biomechanical models. Funct Plant Biol. 2008;35(10):936–950.

174

Da Silva D, Han L, Costes E. Light interception efficiency of apple trees: A multiscale computational study based on MAppleT. Ecol Model. 2014;290:45–53.

175

Pallas B, Clement-Vidal A, Rebolledo MC, Soulie JC, Luquet D. Using plant growth modeling to analyze C source-sink relations under drought: Inter- and intraspecific comparison. Front Plant Sci. 2013;4:00437.

176

Zhu J, Dai Z, Vivin P, Gambetta GA, Delrot S. A 3-D functional–structural grapevine model that couples the dynamics of water transport with leaf gas exchange. Ann Bot. 2017;121(5):833–848.

177

Zhu J, Génard M, Poni S, Gambetta GA, Vivin P, Vercambre G, Trought MC, Ollat N, Delrot S, Dai Z. Modelling grape growth in relation to whole-plant carbon and water fluxes. J Exp Bot. 2019;70(9):2505–2521.

178

Bailey BN. Helios: A scalable 3D plant and environmental biophysical modeling framework. Front Plant Sci. 2019;10:article 01185.

179

Sinoquet H, Le Roux X, Adam B, Ameglio T, Daudet FA. RATP: A model for simulating the spatial distribution of radiation absorption, transpiration and photosynthesis within canopies: Application to an isolated tree crown. Plant Cell Environ. 2001;24(4):395–406.

180

Massonnet C, Regnard JL, Lauri PE, Costes E, Sinoquet H. Contributions of foliage distribution and leaf functions to light interception, transpiration and photosynthetic capacities in two apple cultivars at branch and tree scales. Tree Physiol. 2008;28(5):665–678.

181
Ngao J, Adam B, Saudreau M. Intra-crown spatial variability of leaf temperature and stomatal conductance enhanced by drought in apple tree as assessed by the RATP model. Agric For Meteorol. 2017;237-238:340–354.
182

Song Q, Zhang G, Zhu XG. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2—A theoretical study using a mechanistic model of canopy photosynthesis. Funct Plant Biol. 2013;40(2):108–124.

183

Tardieu F, Davies WJ. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ. 1993;16(4):341–349.

184

Génard M, Souty M. Modeling the peach sugar contents in relation to fruit growth. J Am Soc Hortic Sci. 1996;121(6):1122–1131.

185

Génard M, Lescourret F, Gomez L, Habib R. Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: A modeling approach applied to peach fruit (Prunus persica). Tree Physiol. 2003;23(6):373–385.

186

Dai ZW, Vivin P, Robert T, Milin S, Li SH, Génard M. Model-based analysis of sugar accumulation in response to source–sink ratio and water supply in grape (Vitis vinifera) berries. Funct Plant Biol. 2009;36(6):527–540.

187

Müller J, Braune H, Diepenbrock W. Photosynthesis–stomatal conductance model LEAFC3-N: Specification for barley, generalised nitrogen relations, and aspects of model application. Funct Plant Biol. 2008;35(10):797–810.

188

Diggle AJ. ROOTMAP—A model in three-dimensional coordinates of the growth and structure of fibrous root systems. Plant Soil. 1988;105(2):169–178.

189

Dunbabin VM, Diggle AJ, Rengel Z, van Hugten R. Modelling the interactions between water and nutrient uptake and root growth. Plant Soil. 2002;239(1):19–38.

190

Dunbabin V, Diggle A, Rengel Z. Is there an optimal root architecture for nitrate capture in leaching environments? Plant Cell Environ. 2003;26(6):835–844.

191

Lynch JP, Nielsen KL, Davis RD, Jablokow AG. SimRoot: Modelling and visualization of root systems. Plant Soil. 1997;188(1):139–151.

192

Lynch JP. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiol. 2011;156(3):1041–1049.

193

Lynch JP, Strock CF, Schneider HM, Sidhu JS, Ajmera I, Galindo-Castañeda T. Root anatomy and soil resource capture. Plant Soil. 2021;466(1):21–63.

194

Pagès L, Vercambre G, Drouet JL, Lecompte F, Collet C, Bot JL. Root Typ: A generic model to depict and analyse the root system architecture. Plant Soil. 2004;258(1):103–119.

195

Doussan C, Pierret A, Garrigues E. Water uptake by plant roots: Ⅱ—Modelling of water transfer in the soil root-system with explicit account of flow within the root system—Comparison with experiments. Plant Soil. 2006;283(1):99–117.

196

Wu L, McGechan MB, McRoberts N, Baddeley JA, Watson CA. SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description. Ecol Model. 2007;200(3-4):343–359.

197

Zhang X, Xu M, Sun N, Xiong W, Huang S, Wu L. Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China plain. Geoderma. 2016;265:176–186.

198

Sándor R, Barcza Z, Acutis M, Doro L, Hidy D, Köchy M. Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance. Eur J Agron. 2017;88:22–40.

199

Javaux M, Schröder T, Vanderborght J, Vereecken H. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J. 2008;7(3):1079–1088.

200

Leitner D, Klepsch S, Bodner G, Schnepf A. A dynamic root system growth model based on L-systems. Plant Soil. 2010;332(1):177–192.

201

Zhao J, Bodner G, Rewald B, Leitner D, Nagel KA, Nakhforoosh A. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems. J Exp Bot. 2017;68(5):965–982.

Plant Phenomics
Article number: 0091
Cite this article:
Zhang P, Huang J, Ma Y, et al. Crop/Plant Modeling Supports Plant Breeding: Ⅱ. Guidance of Functional Plant Phenotyping for Trait Discovery. Plant Phenomics, 2023, 5: 0091. https://doi.org/10.34133/plantphenomics.0091

209

Views

5

Crossref

3

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 06 April 2023
Accepted: 26 August 2023
Published: 28 September 2023
© 2023 Pengpeng Zhang et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return