AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Global Wheat Head Detection Challenges: Winning Models and Application for Head Counting

Etienne David1,2( )Franklin Ogidi3Daniel Smith4Scott Chapman4Benoit de Solan2Wei Guo5Frederic Baret1Ian Stavness3
UMR 1114 EMMAH, INRAE, Avignon, France
Arvalis – Institut du Végétal, Paris, France
Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
School of Food and Agricultural Sciences, University of Queensland, Brisbane, Australia
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Show Author Information

Abstract

Data competitions have become a popular approach to crowdsource new data analysis methods for general and specialized data science problems. Data competitions have a rich history in plant phenotyping, and new outdoor field datasets have the potential to embrace solutions across research and commercial applications. We developed the Global Wheat Challenge as a generalization competition in 2020 and 2021 to find more robust solutions for wheat head detection using field images from different regions. We analyze the winning challenge solutions in terms of their robustness when applied to new datasets. We found that the design of the competition had an influence on the selection of winning solutions and provide recommendations for future competitions to encourage the selection of more robust solutions.

References

1

Gao H, Barbier G, Goolsby R. Harnessing the crowdsourcing power of social media for disaster relief. IEEE Intell Syst. 2011;26(3):10–14.

2

Prill RJ, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Stolovitzky G. Crowdsourcing network inference: The DREAM predictive signaling network challenge. Sci Signal. 2011;4(189):mr7.

3
Wiggins A, Crowston K. From conservation to crowdsourcing: A typology of citizen Science. Paper presented at IEEE: Proceedings of the 2011 44th Hawaii International Conference on System Sciences; 2011 January 4–7; Kauai, HI.
4

Giuffrida MV, Chen F, Scharr H, Tsaftaris SA. Citizen crowds and experts: Observer variability in image-based plant phenotyping. Plant Methods. 2018;14:12.

5

Koepnick B, Flatten J, Husain T, Ford A, Silva DA, Bick MJ, Bauer A, Liu G, Ishida Y, Boykov A, et al. De novo protein design by citizen scientists. Nature. 2019;570(7761):390–394.

6

Korpela EJ, Anderson DP, Bankay R, Cobb J, Howard A, Lebofsky M, Siemion APV, von Korff J, Werthimer D. Status of the UC-Berkeley SETI efforts. Proc. SPIE. 2011;8152:815212.

7
Yang X, Zeng Z, Teo SG, Wang L, Chandrasekhar V, Hoi S, Deep learning for practical image recognition: Case study on kaggle competitions. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2018 July, p. 923–931.
8
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database. Paper presented at IEEE: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition; 2009 June 20–25; Miami, FL.
9
Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL, Microsoft coco: Common objects in context, in European Conference on Computer Vision; Springer; 2014, p. 740–755.
10

Albetis J, Duthoit S, Guttler F, Jacquin A, Goulard M, Poilvé H, Féret JB, Dedieu G. Detection of Flavescence dorée grapevine disease using unmanned aerial vehicle (UAV) multispectral imagery. Remote Sens. 2017;9(4):308.

11

Fuentes A, Yoon S, Kim SC, Park DS. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors. 2017;17(9):2022.

12

Toda Y, Okura F. How convolutional neural networks diagnose plant disease. Plant Phenomics. 2019;2019:9237136.

13

Madec S, Jin X, Lu H, de Solan B, Liu S, Duyme F, Heritier E, Baret F. Ear density estimation from high resolution RGB imagery using deep learning technique. Agric For Meteorol. 264:225–234.

14

David E, Madec S, Sadeghi-Tehran P, Aasen H, Zheng B, Liu S, Kirchgessner N, Ishikawa G, Nagasawa K, Badhon MA, et al. Global Wheat Head Detection (GWHD) Dataset: A large and diverse dataset of high-resolution RGB-labelled images to develop and benchmark wheat head detection methods. Plant Phenomics. 2020;2020:3521852.

15

David E, Serouart M, Smith D, Madec S, Velumani K, Liu S, Wang X, Pinto F, Shafiee S, Tahir ISA, et al. Global Wheat Head Detection 2021: An improved dataset for benchmarking wheat head detection methods. Plant Phenomics. 2021;2021:9846158.

16
Ayalew TW, Ubbens JR, Stavness I. Unsupervised domain adaptation for plant organ counting. In: European Conference on Computer VisionSpringer; 2020. p. 330–346.
17
Mortensen AK, Dyrmann M, Karstoft H, Jørgensen R, Gislum R. Semantic Segmentation of Mixed Crops using Deep Convolutional Neural Network, in CIGR-AgEng ConferenceAarhus, Denmark; 2016 June 26–29; (Organising Committee, CIGR), p. 1–6.
18

Scharr H, Minervini M, French AP, Klukas C, Kramer DM, Liu X, Luengo I, Pape JM, Polder G, Vukadinovic D, et al. Leaf segmentation in plant phenotyping: A collation study. Mach Vis Appl. 2016;27(4):585–606.

19
Giselsson TM, Jørgensen RN, Jensen PK, Dyrmann M, Midtiby HS, A public image database for benchmark of plant seedling classification algorithms. arXiv. 2017. https://doi.org/10.48550/arXiv.1711.05458
20

Minervini M, Fischbach A, Scharr H, Tsaftaris SA. Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn Lett. 2016;81:80–89.

21
Chiu MT, Xu X, Wei Y, Huang Z, Schwing AG, Brunner R, Khachatrian H, Karapetyan H, Dozier I, Rose G. Agriculture-Vision: A Large Aerial Image Database for Agricultural Pattern Analysis, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020; p. 2825–2835.
22
Skovsen S, Dyrmann M, Mortensen AK, Laursen MS, Gislum R, Eriksen J, Farkhani S, Karstoft H, Jørgensen RN, The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Paper presented at IEEE: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); 2019 June 16–17; Long Beach, CA.
23

Tsaftaris SA, Scharr H. Sharing the right data right: A symbiosis with machine learning. Trends Plant Sci. 2019;24(2):99–102.

24
Geirhos R, Jacobsen J-H, Michaelis C, Zemel R, Brendel W, Bethge M, Wichmann FA, Shortcut learning in deep neural networks. arXiv. 2020. https://doi.org/10.48550/arXiv.2004.07780
25
David E, Daubige G, Joudelat F, Burger P, Comar A, de Solan B, Baret F. Plant detection and counting from high-resolution RGB images acquired from UAVs: Comparison between deep-learning and handcrafted methods with application to maize, sugar beet, and sunflower crops. bioRxiv. 2021;2021.04.27.441631.
26

Xiong H, Cao Z, Lu H, Madec S, Liu L, Shen C. TasselNetv2: In-field counting of wheat spikes with context-augmented local regression networks. Plant Methods. 2019;15:150.

27
David E, Serouart M, Smith D, Madec S, Velumani K, Liu S, Wang X, Espinosa FP, Shafiee S, Tahir ISA, et al. Global Wheat Head Dataset 2021: More diversity to improve the benchmarking of wheat head localization methods. arXiv. 2021. https://doi.org/10.48550/arXiv.2105.07660
28

Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv Neural Inf Proces Syst. 2015;91–99.

29
Solovyev R, Wang W, Gabruseva T. Weighted boxes fusion: Ensembling boxes from different object detection models. arXiv. 2019. https://doi.org/10.48550/arXiv.1910.13302
30
Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. mixup: Beyond Empirical Risk Minimization. In: International Conference on Learning Representations; 2018.
31
Bochkovskiy A, Wang C-Y, Liao H-YM. YOLOv4: Optimal speed and accuracy of object detection. arXiv. 2020. https://doi.org/10.48550/arXiv.2004.10934
32
Lee D-H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks, in Workshop on challenges in representation learning, ICML; 2013.
33

Sadeghi-Tehran P, Virlet N, Ampe EM, Reyns P, Hawkesford MJ. DeepCount: In-field automatic quantification of wheat spikes using simple linear iterative clustering and deep convolutional neural networks. Front Plant Sci. 2019;10:1176.

34
Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target - McColl - 2014 - Geophysical Research Letters - Wiley Online Library; https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014GL061322 (consulté le 19 Novembre 2021).
35

Lu H, Liu L, Li Y-N, Zhao X-M, Wang X-Q, Cao Z-G. TasselNetV3: Explainable plant counting with guided upsampling and background suppression. IEEE Trans Geosci Remote Sens. 2021;60:4700515.

36
Pound MP, Atkinson JA, Wells DM, Pridmore TP, French AP. Deep learning for multi-task plant phenotyping. Paper presented at IEEE: Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW); 2017 October 22–29.
37

Gomez AS, Aptoula E, Parsons S, Bosilj P. Deep Regression Versus Detection for Counting in Robotic Phenotyping. IEEE Robot Autom Lett. 2021;6(2):2902–2907.

38
Sagawa S, Koh PW, Hashimoto TB, Liang P. Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. arXiv. 2021. https://doi.org/10.48550/arXiv.1911.08731
39
Sun B, Saenko K. Deep CORAL: Correlation alignment for deep domain adaptation. arXiv. 2021. https://doi.org/10.48550/arXiv.1607.01719
40

Thapa R, Zhang K, Snavely N, Belongie S, Khan A. The Plant Pathology Challenge 2020 data set to classify foliar disease of apples. Appl Plant Sci. 2020;8(9):e11390.

41
Goëau H, Bonnet P, Joly A. Overview of lifeCLEF plant identification task 2019: Diving into data deficient tropical countries. in Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum; Cappellato L, Ferro N, Losada DE, Müller H. Eds. Aachen : CEUR-WS; 2019; p. 13.
42
Goëau H, Bonnet P, Joly A. Overview of lifeclef plant identification task 2020, in CLEF 2020-Conference and labs of the Evaluation Forum, 2020.
43
Koh PW, Sagawa S, Marklund H, Xie SM, Zhang M, Balsubramani A, Hu W, Yasunaga M, Phillips RL, Gao I, et al. WILDS: A benchmark of in-the-wild distribution shifts. arXiv. 2021. https://doi.org/10.48550/arXiv.2012.07421
44

Liu C, Wang K, Lu H, Cao Z. Dynamic color transform networks for wheat head detection. Plant Phenomics. 2022;2022:9818452.

45
Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y. CutMix: Regularization strategy to train strong classifiers with localizable features. arXiv. 2019. https://doi.org/10.48550/arXiv.1905.04899
46
Tan M, Pang R, Le QV. Efficientdet: Scalable and efficient object detection, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020; p. 10781–10790.
Plant Phenomics
Article number: 0059
Cite this article:
David E, Ogidi F, Smith D, et al. Global Wheat Head Detection Challenges: Winning Models and Application for Head Counting. Plant Phenomics, 2023, 5: 0059. https://doi.org/10.34133/plantphenomics.0059

157

Views

5

Crossref

2

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 29 June 2022
Accepted: 01 June 2023
Published: 26 June 2023
© 2023 Etienne David et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return