AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Wearable Sensor: An Emerging Data Collection Tool for Plant Phenotyping

Cheng Zhang1,2,3( )Jingjing Kong1Daosheng Wu1Zhiyong Guan2,3Baoqing Ding2,3Fadi Chen2,3
College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
Show Author Information

Abstract

The advancement of plant phenomics by using optical imaging-based phenotyping techniques has markedly improved breeding and crop management. However, there remains a challenge in increasing the spatial resolution and accuracy due to their noncontact measurement mode. Wearable sensors, an emerging data collection tool, present a promising solution to address these challenges. By using a contact measurement mode, wearable sensors enable in-situ monitoring of plant phenotypes and their surrounding environments. Although a few pioneering works have been reported in monitoring plant growth and microclimate, the utilization of wearable sensors in plant phenotyping has yet reach its full potential. This review aims to systematically examine the progress of wearable sensors in monitoring plant phenotypes and the environment from an interdisciplinary perspective, including materials science, signal communication, manufacturing technology, and plant physiology. Additionally, this review discusses the challenges and future directions of wearable sensors in the field of plant phenotyping.

References

1

Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol. 2019;14(6):532–540.

2

Zhang Q, Ying Y, Ping J. Recent advances in plant nanoscience. Adv Sci (Weinh). 2022;9(2):Article 2103414.

3

Giraldo JP, Wu H, Newkirk GM, Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. Nat Nanotechnol. 2019;14(6):541–553.

4

Zhou J, Tardieu F, Pridmore T, Doonan J, Reynolds D, Hall N, Griffiths S, Cheng T, Zhu Y, Wang X. Plant phenomics: History, present status and challenges. J Nanjing Agric Univ. 2018;41(4):580–588.

5

Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol Plant. 2020;13(2):187–214.

6

Lobos GA, Camargo AV, Del Pozo A, Araus JL, Ortiz R, Doonan JH. Plant phenotyping and phenomics for plant breeding. Front Plant Sci. 2017;8:Article 2181.

7

Houle D, Govindaraju DR, Omholt S. Phenomics: The next challenge. Nat Rev Genet. 2010;11(12):855–866.

8

Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors (Basel). 2014;14(11):20078–20111.

9

Wang H, Qian X, Zhang L, Xu S, Li H, Xia X, Dai L, Xu L, Yu J, Liu X. A method of high throughput monitoring crop physiology using chlorophyll fluorescence and multispectral imaging. Front Plant Sci. 2018;9:Article 407.

10

Zarco-Tejada PJ, González-Dugo V, Berni JA. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens Environ. 2012;117:322–337.

11

Ludovisi R, Tauro F, Salvati R, Khoury S, Mugnozza Scarascia G, Harfouche A. UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Front Plant Sci. 2017;8:Article 1681.

12

Mu Y, Fujii Y, Takata D, Zheng B, Noshita K, Honda K, Ninomiya S, Guo W. Characterization of peach tree crown by using high-resolution images from an unmanned aerial vehicle. Hortic Res. 2018;5:Article 74.

13

Arvidsson S, Pérez-Rodríguez P, Mueller-Roeber B. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol. 2011;191(3):895–907.

14

Hoyos-Villegas V, Houx JH, Singh SK, Fritschi FB. Ground-based digital imaging as a tool to assess soybean growth and yield. Crop Sci. 2014;54(4):1756–1768.

15

Cabrera-Bosquet L, Molero G, Stellacci AM, Bort J, Nogués S, Araus JL. NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal Res Commun. 2011;39(1):147–159.

16

Svensgaard J, Roitsch T, Christensen S. Development of a mobile multispectral imaging platform for precise field phenotyping. Agronomy. 2014;4(3):322–336.

17

Dale LM, Thewis A, Boudry C, Rotar I, Dardenne P, Baeten V, Pierna JAF. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review. Appl Spectrosc Rev. 2013;48(2):142–159.

18

Araus JL, Serret MD, Edmeades GO. Phenotyping maize for adaptation to drought. Front Physiol. 2012;3:Article 305.

19

Costa JM, Grant OM, Chaves MM. Thermography to explore plant–environment interactions. J Exp Bot. 2013;64(13):3937–3949.

20

Gorbe E, Calatayud A. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Sci Hortic. 2012;138:24–35.

21

Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, Briem S, Dreissen G, Tittmann S, Braun S, et al. Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol. 2009;36(11):902–914.

22

Bao Y, Tang L, Breitzman MW, Salas Fernandez MG, Schnable PS. Field-based robotic phenotyping of sorghum plant architecture using stereo vision. J Field Robot. 2019;36(2):397–415.

23

Jay S, Rabatel G, Hadoux X, Moura D, Gorretta N. In-field crop row phenotyping from 3D modeling performed using structure from motion. Comput Electron Agric. 2015;110:70–77.

24

Rosell-Polo JR, Cheein FA, Gregorio E, Andújar D, Puigdomènech L, Masip J, Escolà A. Advances in structured light sensors applications in precision agriculture and livestock farming. Adv Agron. 2015;133:71–112.

25

Chéné Y, Rousseau D, Lucidarme P, Bertheloot J, Caffier V, Morel P, Belin É, Chapeau-Blondeau F. On the use of depth camera for 3D phenotyping of entire plants. Comput Electron Agric. 2012;82:122–127.

26

Holman FH, Riche AB, Michalski A, Castle M, Wooster MJ, Hawkesford MJ. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 2016;8(12):Article 1031.

27

Lin Y. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Comput Electron Agric. 2015;119:61–73.

28

Dechant B, Ryu Y, Badgley G, Zeng Y, Berry JA, Zhang Y, Goulas Y, Li Z, Zhang Q, Kang M, et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens Environ. 2020;241:Article 111733.

29

Gao S, Niu Z, Huang N, Hou X. Estimating the leaf area index, height and biomass of maize using HJ-1 and RADARSAT-2. Int J Appl Earth Obs Geoinf. 2013;24:1–8.

30

Li W, Niu Z, Huang N, Wang C, Gao S, Wu C. Airborne LiDAR technique for estimating biomass components of maize: A case study in Zhangye City Northwest China. Ecol Indic. 2015;57:486–496.

31

Wallace AM, McCarthy A, Nichol CJ, Ren X, Morak S, Martinez-Ramirez D, Woodhouse IH, Buller GS. Design and evaluation of multispectral lidar for the recovery of arboreal parameters. IEEE Trans Geosci Remote Sens. 2013;52(8):4942–4954.

32

Colaço AF, Molin JP, Rosell-Polo JR, Escolà A. Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: Current status and challenges. Hortic Res. 2018;5:Article 35.

33

Eitel JU, Magney TS, Vierling LA, Brown TT, Huggins DR. LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status. Field Crop Res. 2014;159:21–32.

34

Guinovart T, Valdés-Ramírez G, Windmiller JR, Andrade FJ, Wang J. Bandage-based wearable potentiometric sensor for monitoring wound pH. Electroanalysis. 2014;26(6):1345–1353.

35

Ashley BK, Brown MS, Park Y, Kuan S, Koh A. Skin-inspired, open mesh electrochemical sensors for lactate and oxygen monitoring. Biosens Bioelectron. 2019;132:343–351.

36

Ma Y, Yue Y, Zhang H, Cheng F, Zhao W, Rao J, Luo S, Wang J, Jiang X, Liu Z, et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano. 2018;12(4):3209–3216.

37

Li Z, Paul R, Ba Tis T, Saville AC, Hansel JC, Yu T, Ristaino JB, Wei Q. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat Plants. 2019;5(8):856–866.

38

Lee G, Wei Q, Zhu Y. Emerging wearable sensors for plant health monitoring. Adv Funct Mater. 2021;31(52):Article 2106475.

39

Tang W, Yan T, Wang F, Yang J, Wu J, Wang J, Yue T, Li Z. Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth. Carbon. 2019;147:295–302.

40

Palazzari V, Mezzanotte P, Alimenti F, Fratini F, Orecchini G, Roselli L. Leaf compatible “eco-friendly” temperature sensor clip for high density monitoring wireless networks. Wirel Power Transfer. 2017;4(1):55–60.

41

Lan L, Le X, Dong H, Xie J, Ying Y, Ping J. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens Bioelectron. 2020;165:Article 112360.

42

Tago S, Ochiai T, Suzuki S, Hayashi M, Kondo T, Fujishima A. Flexible boron-doped diamond (bdd) electrodes for plant monitoring. Sensors. 2017;17(7):Article 1638.

43

Li W, Teng C, Sun Y, Cai L, Xu J-L, Sun M, Li X, Yang X, Xiang L, Xie D, et al. Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Appl Mater Interfaces. 2018;10(40):34485–34493.

44

Kim JJ, Fan R, Allison LK, Andrew TL. On-site identification of ozone damage in fruiting plants using vapor-deposited conducting polymer tattoos. Sci Adv. 2020;6(36):Article eabc3296.

45

Zhao Y, Gao S, Zhu J, Li J, Xu H, Xu K, Cheng H, Huang X. Multifunctional stretchable sensors for continuous monitoring of long-term leaf physiology and microclimate. ACS omega. 2019;4(5):9522–9530.

46

Lo Presti D, Cimini S, Massaroni C, D’Amato R, Caponero MA, De Gara L, Schena E. Plant wearable sensors based on FBG technology for growth and microclimate monitoring. Sensors. 2021;21(19):Article 6327.

47

Lu Y, Xu K, Zhang L, Deguchi M, Shishido H, Arie T, Pan R, Hayashi A, Shen L, Akita S, et al. Multimodal plant healthcare flexible sensor system. ACS Nano. 2020;14(9):10966–10975.

48

Luo Y, Li W, Lin Q, Zhang F, He K, Yang D, Loh XJ, Chen X. A Morphable ionic electrode based on Thermogel for non-invasive hairy plant electrophysiology. Adv Mater. 2021;33(14):Article 2007848.

49

Nagelmüller S, Kirchgessner N, Yates S, Hiltpold M, Walter A. Leaf length tracker: A novel approach to analyse leaf elongation close to the thermal limit of growth in the field. J Exp Bot. 2016;67(6):1897–1906.

50

Nassar JM, Khan SM, Villalva DR, Nour MM, Almuslem AS, Hussain MM. Compliant plant wearables for localized microclimate and plant growth monitoring. Npj flex Electron. 2018;2(1):1–12.

51

Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F. HTPheno: An image analysis pipeline for high-throughput plant phenotyping. BMC Bioinformatics. 2011;12(1):Article 148.

52

Matsuhisa N, Kaltenbrunner M, Yokota T, Jinno H, Kuribara K, Sekitani T, Someya T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat Commun. 2015;6(1):Article 7461.

53

Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano. 2014;8(5):5154–5163.

54

Tang W, Yan T, Ping J, Wu J, Ying Y. Rapid fabrication of flexible and stretchable strain sensor by chitosan-based water ink for plants growth monitoring. Adv Mater Technol. 2017;2(7):Article 1700021.

55

Jiang J, Zhang S, Wang B, Ding H, Wu Z. Hydroprinted liquid-alloy-based morphing electronics for fast-growing/tender plants: From physiology monitoring to habit manipulation. Small. 2020;16(39):Article 2003833.

56
Daskalakis SN, Collado A, Georgiadis A, Tentzeris MM. Backscatter Morse leaf sensor for agricultural wireless sensor networks. Paper presented at: 2017 IEEE SENSORS; 2017 Oct 29; Glasgow, UK.
57

Leinonen I, Grant O, Tagliavia C, Chaves M, Jones H. Estimating stomatal conductance with thermal imagery. Plant Cell Environ. 2006;29(8):1508–1518.

58
Palazzi V, Gelati F, Vaglioni U, Alimenti F, Mezzanotte P, Roselli L. Leaf-compatible autonomous RFID-based wireless temperature sensors for precision agriculture. Paper presented at: 2019 IEEE topical conference on wireless sensors and sensor networks (WiSNet); 2019 Jan 20–23; Orlando, FL.
59

González-Altozano P, Pavel E, Oncins JA, Doltra J, Cohen M, Paço T, Massai R, Castel J. Comparative assessment of five methods of determining sap flow in peach trees. Agric Water Manag. 2008;95(5):503–515.

60

Browne M, Yardimci NT, Scoffoni C, Jarrahi M, Sack L. Prediction of leaf water potential and relative water content using terahertz radiation spectroscopy. Plant Direct. 2020;4(4):Article e00197.

61

Qu C-C, Sun X-Y, Sun W-X, Cao L-X, Wang X-Q, He Z-Z. Flexible wearables for plants. Small. 2021;17(50):Article 2104482.

62

Atherton JJ, Rosamond MC, Zeze DA. A leaf-mounted thermal sensor for the measurement of water content. Sensors Actuators A Phys. 2012;187:67–72.

63
Oren S, Wang Z, Wang X, Tabassum S, Jiao Y, Montgomery BJ, Neihart N, McNinch CM, Schnable PS, Dong L. Tracking of water movement dynamics inside plants using leaf surface humidity sensors. Paper presented at: 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2017 Apr 9–12; Los Angeles, CA.
64

Im H, Lee S, Naqi M, Lee C, Kim S. Flexible PI-based plant drought stress sensor for real-time monitoring system in smart farm. Electronics. 2018;7(7):Article 114.

65

Zhang C, Deng H, Xie Y, Zhang C, Su J-W, Lin J. Stimulus responsive 3D assembly for spatially resolved bifunctional sensors. Small. 2019;15(51):Article 1904224.

66

Deng H, Zhang C, Su J-W, Xie Y, Zhang C, Lin J. Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures. J Mater Chem B. 2018;6(34):5415–5423.

67

Sun B, McCay RN, Goswami S, Xu Y, Zhang C, Ling Y, Lin J, Yan Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv Mater. 2018;30(50):Article 1804327.

68

Qu M, Tian Y, Cheng Y-B, Zhong J, Zhang C. Whole-device mass-producible perovskite photodetector based on laser-induced graphene electrodes. Adv Opt Mater. 2022;10(24):Article 2201741.

69

Oren S, Ceylan H, Schnable PS, Dong L. High-resolution patterning and transferring of graphene-based nanomaterials onto tape toward roll-to-roll production of tape-based wearable sensors. Adv Mater Technol. 2017;2(12):Article 1700223.

70

Chai Y, Chen C, Luo X, Zhan S, Kim J, Luo J, Wang X, Hu Z, Ying Y, Liu X. Cohabiting plant-wearable sensor in situ monitors water transport in plant. Adv Sci. 2021;8(10):Article 2003642.

71

Lew TTS, Koman VB, Gordiichuk P, Park M, Strano MS. The emergence of plant Nanobionics and living plants as technology. Adv Mater Technol. 2020;5(3):Article 1900657.

72

Mousavi SAR, Nguyen CT, Farmer EE, Kellenberger S. Measuring surface potential changes on leaves. Nat Protoc. 2014;9(8):1997–2004.

73

Ochiai T, Tago S, Hayashi M, Fujishima A. Highly sensitive measurement of bio-electric potentials by boron-doped diamond (BDD) electrodes for plant monitoring. Sensors. 2015;15(10):26921–26928.

74

Meder F, Saar S, Taccola S, Filippeschi C, Mattoli V, Mazzolai B. Ultraconformable, self-adhering surface electrodes for measuring electrical signals in plants. Adv Mater Technol. 2021;6(4):Article 2001182.

75

Rottstock T, Joshi J, Kummer V, Fischer M. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology. 2014;95(7):1907–1917.

76

Jansen MAK. Ultraviolet-B radiation effects on plants: Induction of morphogenic responses. Physiol Plant. 2002;116(3):423–429.

77

Li P, Feng Z, Catalayud V, Yuan X, Xu Y, Paoletti E. A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant Cell Environ. 2017;40(10):2369–2380.

78

Ainsworth EA, Serbin SP, Skoneczka JA, Townsend PA. Using leaf optical properties to detect ozone effects on foliar biochemistry. Photosynth Res. 2014;119(1):65–76.

79
Ristaino JB, Cooke DEL, Acuña I, Muñoz M. The threat oflate blight to global food security. In: Ristaino JB, Records AR, editors. Emerging plant diseases and global food security. St. Paul (MN): The American Phytopathological Society; 2020; p.101–132.
80

Li Z, Liu Y, Hossain O, Paul R, Yao S, Wu S, Ristaino JB, Zhu Y, Wei Q. Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter. 2021;4(7):2553–2570.

81

Verdaguer D, Jansen MAK, Llorens L, Morales LO, Neugart S. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Sci. 2017;255:72–81.

82

Kim JJ, Allison LK, Andrew TL. Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci Adv. 2019;5(3):Article eaaw0463.

83

Pleijel H, Broberg MC, Uddling J, Mills G. Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Sci Total Environ. 2018;613:687–692.

84

Ainsworth EA. Understanding and improving global crop response to ozone pollution. Plant J. 2017;90(5):886–897.

85

McCarthy CL, Hancock NH, Raine SR. Applied machine vision of plants: A review with implications for field deployment in automated farming operations. Intell Serv Robot. 2010;3(4):209–217.

86

Mulla DJ. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst Eng. 2013;114(4):358–371.

87

Primicerio J, Di Gennaro SF, Fiorillo E, Genesio L, Lugato E, Matese A, Vaccari FP. A flexible unmanned aerial vehicle for precision agriculture. Precis Agric. 2012;13(4):517–523.

88

Kami C, Lorrain S, Hornitschek P, Fankhauser C. Chapter Two-Light-Regulated Plant Growth and Development. Curr Top Dev Biol. 2010;91:29–66.

89

Cui H-F, Wu W-W, Li M-M, Song X, Lv Y, Zhang T-T. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens Bioelectron. 2018;99:223–229.

90

Abdel-Ghany MF, Hussein LA, El Azab NF. Multiresidue analysis of five neonicotinoid insecticides and their primary metabolite in cucumbers and soil using high-performance liquid chromatography with diode-Array detection. J AOAC Int. 2017;100(1):176–188.

91

Anđelković D, Branković M, Kocić G, Mitić S, Pavlović R. Sorbent-excluding sample preparation method for GC–MS pesticide analysis in apple peel. Biomed Chromatogr. 2020;34(1):Article e4720.

92

Zhao F, He J, Li X, Bai Y, Ying Y, Ping J. Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens Bioelectron. 2020;170:Article 112636.

93
Kumar V, Khare T, Arya S, Shriram V, Wani SH. Effects of toxic gases, ozone, carbon dioxide, and wastes on plant secondary metabolism. In: Ghorbanpour M, Varma A, editors. Medicinal plants and environmental challenges. Cham (Switzerland): Cham Springer International Publishing; 2017. p. 81–96.
94

König WA, Hochmuth DH. Enantioselective gas chromatography in flavor and fragrance analysis: Strategies for the identification of known and unknown plant volatiles. J Chromatogr Sci. 2004;42(8):423–439.

95

Lee K, Park J, Lee M-S, Kim J, Hyun BG, Kang DJ, Na K, Lee CY, Bien F, Park J-U. In-situ synthesis of carbon nanotube–graphite electronic devices and their integrations onto surfaces of live plants and insects. Nano Lett. 2014;14(5):2647–2654.

96

Taylor OC, Eaton FM. Suppression of plant growth by nitrogen dioxide 1. Plant Physiol. 1966;41(1):132–135.

97

Triana Y, Irkham, and Y. Einaga. Electrochemical oxidation behavior of nitrogen dioxide for gas detection using boron doped diamond electrodes. Electroanalysis. 2022;34(4):752–760.

98

Cureau RJ, Pigliautile I, Pisello AL. A new wearable system for sensing outdoor environmental conditions for monitoring hyper-microclimate. Sensors (Basel). 2022;22(2):Article 502.

99

Wang L, Xu T, Zhang X. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC Trends Anal Chem. 2021;134:Article 116130.

100

Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater. 2022;7(11):887–907.

101

Lo Presti D, Di Tocco J, Massaroni C, Cimini S, De Gara L, Singh S, Raucci A, Manganiello G, Woo SL, Schena E, et al. Current understanding, challenges and perspective on portable systems applied to plant monitoring and precision agriculture. Biosens Bioelectron. 2023;222:Article 115005.

102

Sun J-Q, Zhao X-Z, Liang C-Y, Yang Z-X, Liu Y, Qi D-P. The monitoring of plant physiology and ecology: From materials to flexible devices. Chin J Anal Chem. 2023;51(2):Article 100211.

103

Westhoff M, Reuss R, Zimmermann D, Netzer Y, Gessner A,Geßner P, Zimmermann G, Wegner LH, Bamberg E, Schwartz A, et al. A non-invasive probe for online-monitoring of turgor pressure changes under field conditions. Plant Biol. 2009;11(5):701–712.

104

Wirthl D, Pichler R, Drack M, Kettlguber G, Moser R, Gerstmayr R, Hartmann F, Bradt E, Kaltseis R, Siket CM, et al. Instant tough bonding of hydrogels for soft machines and electronics. Sci Adv. 2017;3(6):Article e1700053.

105

Yuk H, Zhang T, Lin S, Parada GA, Zhao X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat Mater. 2016;15(2):190–196.

106

Li Y, Xu H, Han C, Bai Y, Wang Y, Yu H, Song W, Sun Z. Plant-wearable sensors for intelligent forestry monitoring. Adv Sust Syst. 2023;7(2):Article 2200333.

Plant Phenomics
Article number: 0051
Cite this article:
Zhang C, Kong J, Wu D, et al. Wearable Sensor: An Emerging Data Collection Tool for Plant Phenotyping. Plant Phenomics, 2023, 5: 0051. https://doi.org/10.34133/plantphenomics.0051

221

Views

22

Crossref

19

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 24 April 2023
Accepted: 09 June 2023
Published: 04 July 2023
© 2023 Cheng Zhang et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return