AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Prediction of Needle Physiological Traits Using UAV Imagery for Breeding Selection of Slash Pine

Xiaoyun Niu1,Zhaoying Song1,2,Cong Xu3Haoran Wu1,2Qifu Luan2Jingmin Jiang2Yanjie Li2( )
College of Landscape Architecture and Tourism, Hebei Agriculture University, Baoding 071000, China
Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou 311400, Zhejiang Province, China
New Zealand School of Forestry, University of Canterbury, Private Bag 4800, 8041 Christchurch, New Zealand

†These authors contributed equally to this work

Show Author Information

Abstract

Leaf nitrogen (N) content and nonstructural carbohydrate (NSC) content are 2 important physiological indicators that reflect the growth state of trees. Rapid and accurate measurement of these 2 traits multitemporally enables dynamic monitoring of tree growth and efficient tree breeding selection. Traditional methods to monitor N and NSC are time-consuming, are mostly used on a small scale, and are nonrepeatable. In this paper, the performance of unmanned aerial vehicle multispectral imaging was evaluated over 11 months of 2021 on the estimation of canopy N and NSC contents from 383 slash pine trees. Four machine learning methods were compared to generate the optimal model for N and NSC prediction. In addition, the temporal scale of heritable variation for N and NSC was evaluated. The results show that the gradient boosting machine model yields the best prediction results on N and NSC, with R2 values of 0.60 and 0.65 on the validation set (20%), respectively. The heritability (h2) of all traits in 11 months ranged from 0 to 0.49, with the highest h2 for N and NSC found in July and March (0.26 and 0.49, respectively). Finally, 5 families with high N and NSC breeding values were selected. To the best of our knowledge, this is the first study to predict N and NSC contents in trees using time-series unmanned aerial vehicle multispectral imaging and estimating the genetic variation of N and NSC along a temporal scale, which provides more reliable information about the overall performance of families in a breeding program.

References

1

Blumstein M, Hopkins R. Adaptive variation and plasticity in non-structural carbohydrate storage in a temperate tree species. Plant Cell Environ. 2021;44(8):2494–2505.

2

Hoch G, Richter A, Körner C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 2003;26(7):1067–1081.

3

Latt C, Nair P, Kang B. Reserve carbohydrate levels in the boles and structural roots of five multipurpose tree species in a seasonally dry tropical climate. For Ecol Manag. 2001;146(1-3):145–158.

4

Jiang L, Tian D, Ma S, Zhou X, Xu L, Zhu J, Jing X, Zheng C, Shen H, Zhou Z, et al. The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest. Sci Total Environ. 2018;618:1064–1070.

5

Boussadia O, Steppe K, Zgallai H, Ben el Hadj S, Braham M, Lemeur R, van Labeke MC. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci Hortic. 2010;123(3):336–342.

6

Song J, Wang Y, Pan Y, Pang J, Zhang X, Fan J, Zhang Y. The influence of nitrogen availability on anatomical and physiological responses of Populus alba × P. glandulosa to drought stress. BMC Plant Biol. 2019;19(1):1–12.

7

Demotes-Mainard S, Boumaza R, Meyer S, Cerovic ZG. Indicators of nitrogen status for ornamental woody plants based on optical measurements of leaf epidermal polyphenol and chlorophyll contents. Sci Hortic. 2008;115(4):377–385.

8

Zheng H, Cheng T, Li D, Zhou X, Yao X, Tian Y, Cao W, Zhu Y. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sens. 2018;10(6):824.

9

Tang L, Shao G. Drone remote sensing for forestry research and practices. J For Res. 2015;26(4):791–797.

10

Whitehead K, Hugenholtz CH. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. J Unmanned Veh Syst. 2014;2(3):69–85.

11

Whitehead K, Hugenholtz CH, Myshak S, Brown O, LeClair A, Tamminga A, Barchyn TE, Moorman B, Eaton B. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 2: Scientific and commercial applications. J Unmanned Veh Syst. 2014;2(3):86–102.

12

Grüner E, Wachendorf M, Astor T. The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures. PLOS ONE. 2020;15(6):e0234703.

13

Yu J, Wang J, Leblon B. Evaluation of soil properties, topographic metrics, plant height, and unmanned aerial vehicle multispectral imagery using machine learning methods to estimate canopy nitrogen weight in corn. Remote Sens. 2021;13(16):3105.

14

Chea C, Saengprachatanarug K, Posom J, Saikaew K, Wongphati M, Taira E. Optimal models under multiple resource types for Brix content prediction in sugarcane fields using machine learning. Remote Sens Appl. 2022;26:100718.

15

Naik P, Dalponte M, Bruzzone L. Prediction of forest aboveground biomass using multitemporal multispectral remote sensing data. Remote Sens. 2021;13(7):1282.

16

Xuefeng L, Qiang L, Shaolan H, Shilai Y, Deyu H, Zhitao W, Rangjin X, Yongqiang Z, Lie D. Estimation of carbon and nitrogen contents in citrus canopy by low-altitude remote sensing. Int J Agric Biol Eng. 2016;9(5):149–157.

17

Geladi P, Kowalski BR. Partial least-squares regression: A tutorial. Anal Chim Acta. 1986;185:1–17.

18

Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Systems Appl. 1998;13(4):18–28.

19

Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Stat. 2001;1189–1232.

20

Belgiu M, Drăguţ L. Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogramm Remote Sens. 2016;114:24–31.

21
Ashapure A, Oh S, Marconi T, Chang A, Jung J, Landivar J, Enciso J. Unmanned aerial system based tomato yield estimation using machine learning. In: Autonomous air and ground sensing systems for agricultural optimization and phenotyping IV. International Society for Optics and Photonics; 2019. p. 171–180.
22

Dyson J, Mancini A, Frontoni E, Zingaretti P. Deep learning for soil and crop segmentation from remotely sensed data. Remote Sens. 2019;11(16):1859.

23

Wolanin A, Camps-Valls G, Gómez-Chova L, Mateo-García G, van der Tol C, Zhang Y, Guanter L. Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations. Remote Sens Environ. 2019;225:441–457.

24

Cheng J-H, Sun D-W. Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle. Food Eng Rev. 2017;9(1):36–49.

25

Ergon R, Granato D, Ares G. Principal component regression (PCR) and partial least squares regression (PLSR). Math Stat Methods Food Sci Technol. 2014;121–142.

26

Huang S, Miao Y, Yuan F, Gnyp M, Yao Y, Cao Q, Wang H, Lenz-Wiedemann V, Bareth G. Potential of RapidEye and WorldView-2 satellite data for improving rice nitrogen status monitoring at different growth stages. Remote Sens. 2017;9(3):227.

27

Li F, Mistele B, Hu Y, Chen X, Schmidhalter U. Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur J Agron. 2014;52:198–209.

28

Onoyama H, Ryu C, Suguri M, Iida M. Nitrogen prediction model of rice plant at panicle initiation stage using ground-based hyperspectral imaging: Growing degree-days integrated model. Precis Agric. 2015;16(5):558–570.

29

Yao X, Huang Y, Shang G, Zhou C, Cheng T, Tian Y, Cao W, Zhu Y. Evaluation of six algorithms to monitor wheat leaf nitrogen concentration. Remote Sens. 2015;7(11):14939–14966.

30

Mountrakis G, Im J, Ogole C. Support vector machines in remote sensing: A review. ISPRS J Photogramm Remote Sens. 2011;66(3):247–259.

31

Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24(12):1565–1567.

32

Ridgeway G. Generalized Boosted Models: A guide to the gbm package. Update. 2007;1(1):2007.

33
Horning, N. Random Forests: An algorithm for image classification and generation of continuous fields data sets. Paper presented at: Proceedings of the International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences; 2010; Osaka, Japan. p. 1–6.
34

Janitza S, Hornung R. On the overestimation of random forest’s out-of-bag error. PLOS ONE. 2018;13(8):e0201904.

35
Li HB, Wang W, Ding HW, Dong J. Trees weighting random forest method for classifying high-dimensional noisy data. Paper presented at: IEEE. Proceedings of the 2010 IEEE 7th International Conference on E-business Engineering; 2010 November 10–12. p. 160-163.
36

Jin X-l, Diao W-y, Xiao C-h, Wang F-y, Chen B, Wang K-r, Li S-k. Estimation of wheat agronomic parameters using new spectral indices. PLOS ONE. 2013;8(8):e72736.

37

Han Z, Zhu X, Fang X, Wang Z, Wang L, Zhao G, Jiang Y. Hyperspectral estimation of apple tree canopy LAI based on SVM and RF regression. Guang Pu Xue Yu Guang Pu Fen Xi. 2016;36(3):800–805.

38

Yue J, Feng H, Yang G, Li Z. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens. 2018;10(1):66.

39

Zhao J, Fang Y, Chu G, Yan H, Hu L, Huang L. Identification of leaf-scale wheat powdery mildew (Blumeria graminis f. sp. Tritici) combining hyperspectral imaging and an SVM classifier. Plants. 2020;9(8):936.

40

Jin L, Liu Y, Ning J, Liu L, Li X. Carbon storage of exotic slash pine plantations in subtropical China. J For Environ Sci. 2019;35(3):150–158.

41

Zhang S, Luan Q, Jiang J. Genetic variation analysis for growth and wood properties of slash pine based on the non-destructive testing technologies. Sci Silvae Sin. 2017;53(6):30–36.

42

Song Z, Tomasetto F, Niu X, Yan WQ, Jiang J, Li Y. Enabling breeding selection for biomass in slash pine using UAV-based imaging. Plant Phenomics. 2022;2022.

43

Tao X, Li Y, Yan W, Wang M, Tan Z, Jiang J, Luan Q. Heritable variation in tree growth and needle vegetation indices of slash pine (Pinus elliottii) using unmanned aerial vehicles (UAVs). Ind Crop Prod. 2021;173:114073.

44

Dandois JP, Ellis EC. Remote sensing of vegetation structure using computer vision. Remote Sens. 2010;2(4):1157–1176.

45

Navarro A, Young M, Allan B, Carnell P, Macreadie P, Ierodiaconou D. The application of unmanned aerial vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sens Environ. 2020;242:111747.

46

Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM. ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology. 2012;179:300–314.

47
Burdziakowski P. Evaluation of open drone map toolkit for geodetic grade aerial drone mapping–case study. Paper presented at: Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM 2017; 20 June 2017; Albena, Bulgaria. pp. 101–110.
48

Gallardo-Salazar JL, Pompa-García M. Detecting individual tree attributes and multispectral indices using unmanned aerial vehicles: Applications in a pine clonal orchard. Remote Sens 2020;12(24):4144.

49
Hijmans RJ, Van Etten J, Cheng J, Mattiuzzi M, Sumner M, Greenberg JA, Lamigueiro OP, Bevan A, Racine EB, Shortridge A, et al. Package ‘raster’. R package, 2015; 734.
50

Guo Y, Wang H, Wu Z, Wang S, Sun H, Senthilnath J, Wang J, Robin Bryant C, Fu Y. Modified red blue vegetation index for chlorophyll estimation and yield prediction of maize from visible images captured by UAV. Sensors. 2020;20(18):5055.

51
Rossi AM, Villarreal M, Juarez MD, Samman NC. Nitrogen contents in food: A comparison between the Kjeldahl and Hach methods. In: Anales de la Asociación Química Argentina. SciELO Argentina; 2004. p. 99–108.
52

Sáez-Plaza P, Michałowski T, Navas MJ, Asuero AG, Wybraniec S. An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure, and titrimetric finish. Crit Rev Anal Chem. 2013;43(4):178–223.

53
Li H, Sun Q, Zhao S, Zhang W. Principles and techniques of plant physiological biochemical experiment. Higher Education, Beijing; 2000. p. 195–197.
54

Salehi A, Tasdighi H, Gholamhoseini M. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac J Trop Biomed. 2016;6(10):886–891.

55

Mevik B-H, Wehrens R. The pls package: Principal component and partial least squares regression in R. J Stat Softw. 2007;18:1–23.

56
Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. Package ‘e1071’. The R Journal, 2019.
57

Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18–22.

58

Yuan H, Yang G, Li C, Wang Y, Liu J, Yu H, Feng H, Xu B, Zhao X, Yang X. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sens. 2017;9(4):309.

59
Kuhn M. Caret: Classification and regression training. Astrophysics Source Code Library; 2015:ascl: 1505.1003.
60

Li Y, Apiolaza LA, Altaner C. Genetic variation in heartwood properties and growth traits of Eucalyptus bosistoana. Eur J For Res. 2018;137(4):565–572.

61

Wickham H, Chang W, Wickham MH. Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version 2016;2(1):1–189.

62

Wang Z, Wang T, Darvishzadeh R, Skidmore A, Jones S, Suarez L, Woodgate W, Heiden U, Heurich M, Hearne J. Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest. Remote Sens. 2016;8(6):491.

63

Hassan MA, Yang M, Rasheed A, Yang G, Reynolds M, Xia X, Xiao Y, He Z. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci. 2019;282:95–103.

64

Nguyen HT, Kim JH, Nguyen AT, Nguyen LT, Shin JC, Lee BW. Using canopy reflectance and partial least squares regression to calculate within-field statistical variation in crop growth and nitrogen status of rice. Precis Agric. 2006;7(4):249–264.

65

Barzin A, Schmitz JL, Rosin S, Sirpal R, Almond M, Robinette C, Wells S, Hudgens M, Olshan A, Deen S, et al. SARS-CoV-2 seroprevalence among a southern US population indicates limited asymptomatic spread under physical distancing measures. MBio. 2020;11(5):e02426-20.

66

Schucknecht A, Seo B, Krämer A, Asam S, Atzberger C, Kiese R. Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data–a comparison of sensors, algorithms, and predictor sets. Biogeosciences. 2022;19(10):2699–2727.

67

Li X, Ba Y, Zhang M, Nong M, Yang C, Zhang S. Sugarcane nitrogen concentration and irrigation level prediction based on UAV multispectral imagery. Sensors. 2022;22(7):2711.

68

Pissard A, Fernández Pierna JA, Baeten V, Sinnaeve G, Lognay G, Mouteau A, Dupont P, Rondia A, Lateur M. Non-destructive measurement of vitamin C, total polyphenol and sugar content in apples using near-infrared spectroscopy. J Sci Food Agric. 2013;93(2):238–244.

69

Yang C, Zhao Y, An T, Liu Z, Jiang Y, Li Y, Dong C. Quantitative prediction and visualization of key physical and chemical components in black tea fermentation using hyperspectral imaging. LWT. 2021;141:110975.

70

Moghimi A, Pourreza A, Zuniga-Ramirez G, Williams LE, Fidelibus MW. A novel machine learning approach to estimate grapevine leaf nitrogen concentration using aerial multispectral imagery. Remote Sens. 2020;12(21):3515.

71

Yahata N, Morimoto J, Hashimoto R, Lisi G, Shibata K, Kawakubo Y, Kuwabara H, Kuroda M, Yamada T, Megumi F, et al. A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat Commun. 2016;7(1):1–12.

72

Krause S, Sanders TGM, Mund JP, Greve K. UAV-based photogrammetric tree height measurement for intensive forest monitoring. Remote Sens. 2019;11(7):758.

73

Kwong IHY, Fung T. Tree height mapping and crown delineation using LiDAR, large format aerial photographs, and unmanned aerial vehicle photogrammetry in subtropical urban forest. Int J Remote Sens. 2020;41(14):5228–5256.

74

Panagiotidis D, Abdollahnejad A, Surový P, Chiteculo V. Determining tree height and crown diameter from high-resolution UAV imagery. Int J Remote Sens. 2017;38(8-10):2392–2410.

75

Slewinski TL, Braun DM. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci. 2010;178(4):341–349.

76

Zhang L, Sun S, Liang Y, Li B, Ma S, Wang Z, Ma B, Li M. Nitrogen levels regulate sugar metabolism and transport in the shoot tips of crabapple plants. Front Plant Sci. 2021;12:372.

77

Bojović B, Marković A. Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujevac J Sci. 2009;31(5827):69–74.

78

Ercoli L, Mariotti M, Masoni A, Massantini F. Relationship between nitrogen and chlorophyll content and spectral properties in maize leaves. Eur J Agron. 1993;2(2):113–117.

79

Schlemmer M, Gitelson A, Schepers J, Ferguson R, Peng Y, Shanahan J, Rundquist D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int J Appl Earth Obs Geoinf. 2013;25:47–54.

80

Schepers J, Francis DD, Vigil M, Below FE. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Commun Soil Sci Plant Anal. 1992;23(17-20):2173–2187.

81

Vapaavuori EM, Rikala R, Ryyppö A. Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiol. 1992;10(3):217–230.

82

Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol. 2005;8(1):93–102.

83
Rouse JW Jr, Haas RH, Deering DW, Schell JA, Harlan JC. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA Technical Reports Server; 1973.
84

Gitelson AA, Merzlyak MN. Remote sensing of chlorophyll concentration in higher plant leaves. Adv Space Res. 1998;22(5):689–692.

85

Gitelson A, Merzlyak MN. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol. 1994;143(3):286–292.

86

Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sens Environ. 1996;55(2):95–107.

87

Jasper J, Reusch S, Link A. Active sensing of the N status of wheat using optimized wavelength combination: Impact of seed rate, variety and growth stage. Precis Agric. 2009;9:23–30.

88

Kaur R, Singh B, Singh M, Thind SK. Hyperspectral indices, correlation and regression models for estimating growth parameters of wheat genotypes. J Indian Soc Remote Sens. 2015;43(3):551–558.

89

Raper T, Varco J. Canopy-scale wavelength and vegetative index sensitivities to cotton growth parameters and nitrogen status. Precis Agric. 2015;16(1):62–76.

90
Schleicher TD, Bausch WC, Delgado JA, Ayers PD. Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management. Paper presented at: ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, 2001;1998. p. 1.
91

Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 1979;8(2):127–150.

92
Yang Z, Willis P, Mueller R. Impact of band-ratio enhanced AWIFS image to crop classification accuracy. Paper presented at: Proceedings of the Pecora 17 Remote Sensing Symposium; 18–20 November 2008; Denver, CO, Canada. pp. 18–20.
93
Naji TA. Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot. In: Journal of physics: conference series. IOP Publishing; 2018. p. 012083.
94

Nagler PL, Scott RL, Westenburg C, Cleverly JR, Glenn EP, Huete AR. Evapotranspiration on western US rivers estimated using the enhanced vegetation index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens Environ. 2005;97(3):337–351.

95

Cao Q, Miao Y, Wang H, Huang S, Cheng S, Khosla R, Jiang R. Non-destructive estimation of rice plant nitrogen status with crop circle multispectral active canopy sensor. Field Crop Res. 2013;154:133–144.

96

Sripada RP, Heiniger RW, White JG, Meijer AD. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron J 2006;98(4):968–977.

Plant Phenomics
Article number: 0028
Cite this article:
Niu X, Song Z, Xu C, et al. Prediction of Needle Physiological Traits Using UAV Imagery for Breeding Selection of Slash Pine. Plant Phenomics, 2023, 5: 0028. https://doi.org/10.34133/plantphenomics.0028

150

Views

8

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 16 July 2022
Accepted: 06 February 2023
Published: 15 March 2023
© 2023 Xiaoyun Niu et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License (CC BY 4.0).

Return