AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Phenotyping of Silique Morphology in Oilseed Rape Using Skeletonization with Hierarchical Segmentation

Zhihong Ma1,2Ruiming Du1,2Jiayang Xie1,2Dawei Sun1,2Hui Fang1,2Lixi Jiang3Haiyan Cen1,2( )
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China
Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, P.R. China
Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, P.R. China
Show Author Information

Abstract

Silique morphology is an important trait that determines the yield output of oilseed rape (Brassica napus L.). Segmenting siliques and quantifying traits are challenging because of the complicated structure of an oilseed rape plant at the reproductive stage. This study aims to develop an accurate method in which a skeletonization algorithm was combined with the hierarchical segmentation (SHS) algorithm to separate siliques from the whole plant using 3-dimensional (3D) point clouds. We combined the L1-median skeleton with the random sample consensus for iteratively extracting skeleton points and optimized the skeleton based on information such as distance, angle, and direction from neighborhood points. Density-based spatial clustering of applications with noise and weighted unidirectional graph were used to achieve hierarchical segmentation of siliques. Using the SHS, we quantified the silique number (SN), silique length (SL), and silique volume (SV) automatically based on the geometric rules. The proposed method was tested with the oilseed rape plants at the mature stage grown in a greenhouse and field. We found that our method showed good performance in silique segmentation and phenotypic extraction with R2 values of 0.922 and 0.934 for SN and total SL, respectively. Additionally, SN, total SL, and total SV had the statistical significance of correlations with the yield of a plant, with R values of 0.935, 0.916, and 0.897, respectively. Overall, the SHS algorithm is accurate, efficient, and robust for the segmentation of siliques and extraction of silique morphological parameters, which is promising for high-throughput silique phenotyping in oilseed rape breeding.

References

1

Friedt W, Snowdon R, Ordon F, Ahlemeyer J. Plant breeding: Assessment of genetic diversity in crop plants and its exploitation in breeding. Prog Bot. 2007;68:151–178.

2

Nowosad K, Liersch A, Poplawska W, Bocianowski J. Genotype by environment interaction for seed yield in rapeseed (Brassica napus L.) using additive main effects and multiplicative interaction model. Euphytica. 2016;208(1):187–194.

3

Oleksy A, Zajac T, Klimek-Kopyra A, Pustkowiak H, Jankowski K. Relative siliques position in a crop layer as an indicator of yield and quality in winter rape. Pak J Agric Sci. 2018;55(4):727–738.

4

Wang C, Hai J, Yang J, Tian J, Chen W, Chen T, Luo H, Wang H. Influence of leaf and silique photosynthesis on seeds yield and seeds oil quality of oilseed rape (Brassica napus L.). Eur J Agron. 2016;74:112–118.

5

Wolko J, Dobrzycka A, Bocianowski J. Bartkowiak-Broda I: Estimation of heterosis for yield-related traits for single cross and three-way cross hybrids of oilseed rape (Brassica napus L.). Euphytica. 2019;215(10):156.

6

Yang P, Shu C, Chen L, Xu J, Wu J, Liu K. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet. 2012;125(2):285–296.

7

Mingliang W, Lun T, Chunyun G, Chuzhou T. Optimization analysis on parameters of cleaning sieve of rape combine of "Bi Lang 4LZ(Y)-1.0". Adv J Food Sci Technol. 2014;6(1):144–148.

8

Liu R, Huang S, Nie Y, Xu S. Automated detection research for number and key phenotypic parameters of rapeseed silique. Chin J Oil Crop Sci. 2020;42(1):71–77.

9

Wang W, Hu Q, Mei D, Li Y, Wang H, Wang J, Fu L, Liu J. Evaluation of branch and pod angle measurement based on digital images from Brassica napus L. Chin J Oil Crop Sci. 2015;37(4):566–570.

10

Li L, Zhang Q, Huang DF. A review of imaging techniques for plant phenotyping. Sensors. 2014;14(11):20078–20111.

11

Sun D, Robbins K, Morales N, Shu Q, Cen H. Advances in optical phenotyping of cereal crops. Trends Plant Sci. 2022;27(2):191–208.

12

Xu S, Lu K, Pan L, Liu T, Zhou Y, Wang B. 3D reconstruction of rape branch and pod recognition based on RGB-D camera. Trans Chin Soc Agric Mach. 2019;50(2):21–27.

13
Lin Y, Ruifang Z, Pujuan S, Pengfei W. Segmentation of crop organs through region growing in 3D space. Paper presented at: Agro-Geoinformatics 2016. Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics); 2016 Jul 18–20; Tianjin, China.
14

Amiri N, Yao W, Heurich M, Krzystek P, Skidmore AK. Estimation of regeneration coverage in a temperate forest by 3D segmentation using airborne laser scanning data. Int J Appl Earth Obs Geoinf. 2016;52:252–262.

15

Lindberg E, Holmgren J, Olofsson K, Wallerman J, Olsson H. Estimation of tree lists from airborne laser scanning using tree model clustering and k-MSN imputation. Remote Sens. 2013;5(4):1932–1955.

16

Liu WT, Wang CL, Yan D, Chen WL, Luo LF. Estimation of characteristic parameters of grape clusters based on point cloud data. Front Plant Sci. 2022;13:885167.

17

Bao Y, Tang L, Srinivasan S, Schnable PS. Field-based architectural traits characterisation of maize plant using time-of-flight 3D imaging. Biosyst Eng. 2019;178:86–101.

18

Wu S, Wen W, Xiao B, Guo X, Du J, Wang C, Wang Y. An accurate skeleton extraction approach from 3D point clouds of maize plants. Front Plant Sci. 2019;10:248.

19
Gaillard M, Miao C, Schnable J, Benes B. Sorghum segmentation by skeleton extraction. In: Bartoli A, Fusiello A, editors. European conference on computer vision: 2020. Cham (Switzerland): Springer; 2020. p. 296–311.
20

Chaudhury A, Godin C. Skeletonization of plant point cloud data using stochastic optimization framework. Front Plant Sci. 2020;11:773.

21
Preuksakarn C, Boudon F, Ferraro P, Durand J-B, Nikinmaa E, Godin C. Reconstructing plant architecture from 3D laser scanner data. Paper presented at: FSPM 2010. Proceedings of the 6th International Workshop on Functional-Structural Plant Models; 2010 Sep 12–17; Davis, CA.
22

Li R, Bu G, Wang P. An automatic tree skeleton extracting method based on point cloud of terrestrial laser scanner. Int J Opt. 2017;2017:5408503.

23

Han X-F, Jin JS, Wang M-J, Jiang W, Gao L, Xiao L. A review of algorithms for filtering the 3D point cloud. Signal Process Image Commun. 2017;57:103–112.

24

Yang C, Wang Z, He W, Li Z. Development of a fast transmission method for 3D point cloud. Multimed Tools Appl. 2018;77(19):25369–25387.

25

Hu Y, Wang L, Xiang L, Wu Q, Jiang H. Automatic non-destructive growth measurement of leafy vegetables based on kinect. Sensors. 2018;18(3):306.

26

Daszykowski M, Kaczmarek K, Heyden YV, Walczak B. Robust statistics in data analysis—A review basic concepts. Chemom Intell Lab Syst. 2007;85(2):203–219.

27

Huang H, Wu S, Cohen-Or D, Gong M, Zhang H, Li G, Chen B. L1-medial skeleton of point cloud. ACM Trans Graph. 2013;(4):32, 65.

28

Ozbay E, Cinar A, Guler Z. A hybrid method for skeleton extraction on Kinect sensor data: Combination of L1-median and Laplacian shrinking algorithms. Measurement. 2018;125:535–544.

29

Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM. 1981;24(6):381–395.

30

Bäcklund H, Hedblom A, Neijman N. A density-based spatial clustering of application with noise. Data Mining TNM033. 2011;33:11–30.

31

Li N, Shi J, Wang X, Liu G, Wang H. A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol. 2014;14.

32

Fu Y, Wei D, Dong H, He Y, Cui Y, Mei J, Wan H, Li J, Snowdon R, Friedt W, et al. Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep. 2015;5:14407.

33

Bennett E, Roberts JA, Wagstaff C. Manipulating resource allocation in plants. J Exp Bot. 2012;63(9):3391–3400.

34
Sylvester-Bradley R, Lunn G, Foulkes J, Shearman V, Spink J, Ingram J. Management strategies for high yields of cereals and oilseed rape. Paper presented at: HGCA 2002. Proceedings of the HGCA Conference: Agronomic Intelligence: The Basis for Profitable Production; 2002 Jan 16 to 17; London, UK.
35
Rusu RB, Cousins S. 3D is here: Point Cloud Library (PCL). Paper presented at: ICRA 2011. Proceedings of the 2011 IEEE International Conference on Robotics and Automation; 2011 May 9–13; Shanghai, China.
36
Zhou Q-Y, Park J, Koltun V. Open3D: A modern library for 3D data processing. arXiv. 2018. https://doi.org/10.48550/arXiv.1801.09847
37

Bao Y, Tang L, Breitzman MW, Fernandez MGS, Schnable PS. Field-based robotic phenotyping of sorghum plant architecture using stereo vision. J Field Robot. 2019;36(2):397–415.

38

Dandrifosse S, Bouvry A, Leemans V, Dumont B, Mercatoris B. Imaging wheat canopy through stereo vision: Overcoming the challenges of the laboratory to field transition for morphological features extraction. Front Plant Sci. 2020;11:96.

39

Scharr H, Minervini M, French AP, Klukas C, Kramer DM, Liu XM, Luengo I, Pape JM, Polder G, Vukadinovic D, et al. Leaf segmentation in plant phenotyping: A collation study. Mach Vis Appl. 2016;27(4):585–606.

40

Xia CL, Wang LT, Chung BK, Lee JM. In situ 3D segmentation of individual plant leaves using a RGB-D camera for agricultural automation. Sensors. 2015;15(8):20463–20479.

41

Lei L, Qiu C, Li Z, Han D, Han L, Zhu Y, Wu J, Xu B, Feng H, Yang H, et al. Effect of leaf occlusion on leaf area index inversion of maize using UAV-LiDAR data. Remote Sens. 2019;11(9):1067.

42
Zermas D, Morellas V, Mulla D, Papanikolopoulos N. Estimating the leaf area index of crops through the evaluation of 3D models. Paper presented at: IROS 2017. Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017 Sep 24–28; Vancouver, BC, Canada.
43

Iniguez R, Palacios F, Barrio I, Hernandez I, Gutierrez S, Tardaguila J. Impact of leaf occlusions on yield assessment by computer vision in commercial vineyards. Agronomy. 2021;11(5):1003.

44

Jin SC, Su YJ, Wu FF, Pang SX, Gao S, Hu TY, Liu J, Guo QH. Stem-leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data. IEEE Trans Geosci Remote Sens. 2019;57(3):1336–1346.

45

Miao T, Zhu C, Xu TY, Yang T, Li N, Zhou YC, Deng HB. Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud. Comput Electron Agric. 2021;187.

46

Miao T, Wen WL, Li YL, Wu S, Zhu C, Guo XY. Label3DMaize: Toolkit for 3D point cloud data annotation of maize shoots. GigaScience. 2021;10(5): 10.1093/gigascience/giab031.

47

Xiang L, Bao Y, Tang L, Ortiz D, Salas-Fernandez MG. Automated morphological traits extraction for sorghum plants via 3D point cloud data analysis. Comput Electron Agric. 2019;162:951–961.

48

Ghahremani M, Williams K, Corke FMK, Tiddeman B, Liu Y, Doonan JH. Deep segmentation of point clouds of wheat. Front Plant Sci. 2021;12:608732.

49

Li Y, Wen W, Miao T, Wu S, Yu Z, Wang X, Guo X, Zhao C. Automatic organ-level point cloud segmentation of maize shoots by integrating high-throughput data acquisition and deep learning. Comput Electron Agric. 2022;193:106702.

50

Turgut K, Dutagaci H, Galopin G, Rousseau D. Segmentation of structural parts of rosebush plants with 3D point-based deep learning methods. Plant Methods. 2022;18:20.

51

Tyagi S, Mazumdar PA, Mayee P, Shivaraj SM, Anand S, Singh A, Madhurantakam C, Sharma P, Das S, Kumar A, et al. Natural variation in Brassica FT homeologs influences multiple agronomic traits including flowering time, silique shape, oil profile, stomatal morphology and plant height in B. juncea. Plant Sci. 2018;277:251–266.

52

Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics. 2009;182(3):851–861.

53

Zhang LW, Yang GS, Liu PW, Hong DF, Li SP, He QB. Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet. 2011;122(1):21–31.

54

Wang XD, Chen L, Wang AN, Wang H, Tian JH, Zhao XP, Chao HB, Zhao YJ, Zhao WG, Xiang J, et al. Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol. 2016;16:Article 71.

55

Raboanatahiry N, Chao HB, Dalin H, Pu S, Yan W, Yu LJ, Wang BS, Li MT. QTL alignment for seed yield and yield related traits in Brassica napus. Front Plant Sci. 2018;9:Article 1127.

56

Zajac T, Oleksy A, Stoklosa A, Klimek-Kopyra A. Comparison of morphological traits, productivity and canopy architecture of winter oilseed rape (Brassica napus L.) and white mustard (Sinapis alba L.). J Appl Bot Food Qual. 2011;84(2):183–191.

57

Andelić E, Antunović M, Stošić M, Iljkić D, Varga I. Yield components of winter oilseed rape regard to plant population. Columella-J Agric Environ Sci. 2018;5(2):33–41.

58

Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crop Res. 2000;67(1):35–49.

59

Paulus S. Measuring crops in 3D: Using geometry for plant phenotyping. Plant Methods. 2019;15(1):Article 103.

60

Bouchet A-S, Nesi N, Bissuel C, Bregeon M, Lariepe A, Navier H, Ribiere N, Orsel M, Grezes-Besset B, Renard M, et al. Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. Euphytica. 2014;199(1–2):183–205.

61

Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA. 2015;112(37):E5123–E5132.

62

Elster R, Bommert P, Sheridan WF, Werr W. Analysis of four embryo-specific mutants in Zea mays reveals that incomplete radial organization of the proembryo interferes with subsequent development. Dev Genes Evol. 2000;210(6):300–310.

63

Young LW, Wilen RW, Bonham-Smith PC. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot. 2004;55(396):485–495.

64

Chen Z, Huo Q, Yang H, Jian H, Qu C, Lu K, Li J. Joint RNA-seq and miRNA profiling analyses to reveal molecular mechanisms in regulating thickness of pod canopy in Brassica napus. Genes. 2019;10(8):591.

Plant Phenomics
Article number: 0027
Cite this article:
Ma Z, Du R, Xie J, et al. Phenotyping of Silique Morphology in Oilseed Rape Using Skeletonization with Hierarchical Segmentation. Plant Phenomics, 2023, 5: 0027. https://doi.org/10.34133/plantphenomics.0027

157

Views

6

Crossref

5

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 16 October 2022
Accepted: 03 February 2023
Published: 15 March 2023
© 2023 Zhihong Ma et al. Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License (CC BY 4.0).

Return