AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Perspective | Open Access

Diversifying Resistance Mechanisms in Cereal Crops Using Microphenomics

Peter M. Dracatos1( )Stefanie Lück2Dimitar K. Douchkov2
Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC 3086, Australia
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Seeland OT Gatersleben, Germany
Show Author Information

References

1

Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, Tonstad S, Vatten LJ, Riboli E, Norat T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716.

2

Savary S, Ficke A, Aubertot JN, Hollier C. Crop losses due to diseases and their implications for global food production losses and food security. Food Sec. 2012;4:519–537.

3

Ishii H. Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Jpn Agric Res Q. 2006;40(3):205–211.

4

Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet. 2018;19(1):21–33.

5

Park RF, Golegaonkar PG, Derevnina L, Sandhu KS, Karaoglu H, Elmansour HM, Dracatos PM, Singh D. Leaf rust of cultivated barley: Pathology and control. Annu Rev Phytopathol. 2015;53:565–589.

6

McDonald BA, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol. 2002;40:349–379.

7

van der Plank JE. Disease resistance in plants. New York/London: Academic Press; 1968.

8

Wang Y, Subedi Y, de Vries H, Doornenbal P, Vels A, Hensel G, Kumlehn J, Johnston PA, Qi X, Blilou I, et al. Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nat Plants. 2019;5(11):1129–1135.

9

Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323(5919):1360–1363.

10

Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet. 2015;47(12):1494–1498.

11

Elmansour H, Singh D, Dracatos PM, Park RF. Identification and characterization of seedling and adult plant resistance to Puccinia hordei in selected African barley germplasm. Euphytica. 2017;213:119.

12

Singh D, Ziems LA, Dracatos PM, Pourkheirandish M, Tshewang S, Czembor P, German S, Fowler RA, Snyman L, Platz GJ, et al. Genome-wide association studies provide insights on genetic architecture of resistance to leaf rust in a worldwide barley collection. Mol Breed. 2018;38:43.

13

Qi X, Niks RE, Stam P, Lindhout P. Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet. 1998;96:1205–1215.

14

Zellerhoff N, Himmelbach A, Dong WB, Bieri S, Schaffrath U, Schweizer P. Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiol. 2010;152:2053–2066.

15

Zierold U, Scholz U, Schweizer P. Transcriptome analysis of mlo-mediated resistance in the epidermis of barley. Mol Plant Pathol. 2005;6:139–151.

16

Douchkov D, Lück S, Johrde A, Nowara D, Himmelbach A, Rajaraman J, Stein N, Sharma R, Kilian B, Schweizer P. Discovery of genes affecting resistance of barley to adapted and non-adapted powdery mildew fungi. Genome Biol. 2014;15(12):518.

17

Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for computer vision: A brief review. Comput Intell Neurosci. 2018;2018:7068349.

18

Xing F, Xie Y, Su H, Liu F, Yang L. Deep learning in microscopy image analysis: A survey. IEEE Trans Neural Netw Learn Syst. 2018;29:4550–4568.

19

Sujatha R, Chatterjee JM, Jhanjhi NZ, Brohi SN. Performance of deep learning vs machine learning in plant leaf disease detection. Microprocess Microsyst. 2021;80:103615.

20

Brehar R, Mitrea DA, Vancea F, Marita T, Nedevschi S, Lupsor-Platon M, Rotaru M, Badea RI. Comparison of deep-learning and conventional machine-learning methods for the automatic recognition of the hepatocellular carcinoma areas from ultrasound images. Sensors. 2020;20:3085.

21
S. Lück, D. Douchkov. Deep phenotyping platform for microscopic plant-pathogen interactions. 7 Mar 2022. https://www.biorxiv.org/content/10.1101/2022.02.17.480879v2.
22

Kuska MT, Heim MT, Geedicke, Heim RHJ, Geedicke I, Gold KM, Brugger A, Paulus S. Digital plant pathology: A foundation and guide to modern agriculture. J Plant Dis Prot. 2022;129(3):457–468.

23

Lück S, Strickert M, Lorbeer M, Melchert F, Backhaus A, Kilias D, Seiffert U, Douchkov D. “Macrobot”: An automated segmentation-based system for powdery mildew disease quantification. Plant Phenomics. 2020;2020:5839856.

24

Hinterberger V, Douchkov D, Lück S, Kale S, Mascher M, Stein N, Reif JC, Schulthess AW. Mining for new sources of resistance to powdery mildew in genetic resources of winter wheat. Front Plant Sci. 2022;13:836723.

25

Saleem K, Hovmøller MS, Labouriau R, Justesen AF, Orabi J, Andersen JR, Sorensen CK. Macroscopic and microscopic phenotyping using diverse yellow rust races increased the resolution of seedling and adult plant resistance in wheat breeding lines. MDPI Agronomy. 2015;53:445–470.

26

Milner SG, Jost M, Taketa S, Mazón ER, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, König P, et al. Genebank genomics highlights the diversity of a global barley collection. Nat Genet. 2019;51(2):319–326.

27

Sandhu KS, Merrick LF, Sankaran S, Zhang Z, Carter AH. Prospectus of genomic selection and phenomics in cereal, legume and oilseed breeding programs. Front Genet. 2022;12:829131.

Plant Phenomics
Article number: 0023
Cite this article:
Dracatos PM, Lück S, Douchkov DK. Diversifying Resistance Mechanisms in Cereal Crops Using Microphenomics. Plant Phenomics, 2023, 5: 0023. https://doi.org/10.34133/plantphenomics.0023

127

Views

6

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 04 October 2022
Accepted: 04 January 2023
Published: 13 February 2023
© 2023 Peter M. Dracatos et al. Exclusive Licensee Nanjing Agricultural University. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License (CC BY 4.0).

Return