Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The commercial application of high-capacity silicon (Si) anode in lithium-ion batteries is limited by the marked volume expansion and continuous interface side reactions between the active material and the electrolyte. To address the issues, one popular strategy is to induce functional salt additives to the electrolyte, which could help to construct a robust solid electrolyte interphase (SEI) to resist the undesirable parasitic reactions and fast electrode failure. However, there exists the shortness of the dependency in the solubility of the additive salt and the possible homogeneity of the SEI. In light of this, we propose an innovative method of incorporating an SEI stabilization regent, exemplified by lithium difluorooxalate borate (LiDFOB), in the Si anode. This approach facilitates the effective utilization of the functional SEI stabilizer and impressively enhances the presence of inorganic compounds within the SEI. The resultant stable SEI effectively impedes interfacial side reactions, mitigates substantial expansion/contraction, and promotes the transport of Li+ ions. As a result, the Si electrode incorporated with LiDFOB displays superior long cycle life and enhanced rate capability, indicating the advancement of planting LiDFOB in the electrode in promoting the development of advanced high-energy-density lithium-ion batteries.
Ge M, Cao C, Biesold GM, Sewell CD, Hao S-M, Huang J, Zhang W, Lai Y, Lin Z. Recent advances in silicon-based electrodes: From fundamental research toward practical applications. Adv Mater. 2021;33(16):2004577.
Li Y, Li Q, Chai J, Wang Y, Du J, Chen Z, Rui Y, Jiang L, Tang B. Si-based anode lithium-ion batteries: A comprehensive review of recent progress. ACS Mater Lett. 2023;5(11):2948–2970.
Sun L, Liu Y, Wu J, Shao R, Jiang R, Tie Z, Jin Z. A review on recent advances for boosting initial coulombic efficiency of silicon anodic lithium ion batteries. Small. 2022;18(5):2102894.
Song A, Zhang W, Guo H, Dong L, Jin T, Shen C, Xie K. A review on the features and progress of silicon anodes-based solid-state batteries. Adv Energy Mater. 2023;13(39):2301464.
Yang D, Ng YXA, Zhang K, Chang Q, Chen J, Liang T, Cheng S, Sun Y, Shen W, Ang EH, et al. Imaging the surface/interface morphologies evolution of silicon anodes using in situ/operando electron microscopy. ACS Appl Mater Interfaces. 2023;15(17):20583–20602.
Zhu B, Wang X, Yao P, Li J, Zhu J. Towards high energy density lithium battery anodes: Silicon and lithium. Chem Sci. 2019;10(30):7132–7148.
Han X, Gu L, Sun Z, Chen M, Zhang Y, Luo L, Xu M, Chen S, Liu H, Wan J, et al. Manipulating charge-transfer kinetics and a flow-domain LiF-rich interphase to enable high-performance microsized silicon-silver-carbon composite anodes for solid-state batteries. Energy Environ Sci. 2023;16(11):5395–5408.
Yang Z, Wu C, Li S, Qiu L, Yang Z, Zhong Y, Zhong B, Song Y, Wang G, Liu Y, et al. A unique structure of highly stable interphase and self-consistent stress distribution radial-gradient porous for silicon anode. Adv Funct Mater. 2022;32(13):2107897.
Lee T, Kim N, Lee J, Lee Y, Sung J, Kim H, Chae S, Cha H, Son Y, Kwak SK, et al. Suppressing deformation of silicon anodes via interfacial synthesis for fast-charging lithium-ion batteries. Adv Energy Mater. 2023;13(41):2301139.
Chae S, Kwak W-J, Han KS, Li S, Engelhard MH, Hu J, Wang C, Li X, Zhang J-G. Rational design of electrolytes for long-term cycling of Si anodes over a wide temperature range. ACS Energy Lett. 2021;6(2):387–394.
Yeom SJ, Wi T-U, Jung S-J, Kim MS, Jeon S-C, Lee H-W. Near zero-strain silicon oxycarbide interphases for stable Li-ion batteries. Chem Comm. 2023;59(80):11963–11966.
Ghaur A, Peschel C, Dienwiebel I, Haneke L, Du L, Profanter L, Gomez-Martin A, Winter M, Nowak S, Placke T. Effective SEI formation via phosphazene-based electrolyte additives for stabilizing silicon-based lithium-ion batteries. Adv Energy Mater. 2023;13(26):2203503.
Mu T, Xiang L, Wan X, Lou S, Du C, Zuo P, Yin G. Ultrahigh areal capacity silicon anodes realized via manipulating electrode structure. Energy Storage Mater. 2022;53:958–968.
Yang Y, Wang J, Kim SC, Zhang W, Peng Y, Zhang P, Vilá RA, Ma Y, Jeong YK, Cui Y. In situ prelithiation by direct integration of lithium mesh into battery cells. Nano Lett. 2023;23(11):5042–5047.
Ko S, Baek M-J, Wi T-U, Kim J, Park C, Lim D, Yeom SJ, Bayramova K, Lim HY, Kwak SK, et al. Understanding the role of a water-soluble catechol-functionalized binder for silicon anodes by diverse in situ analyses. ACS Mater Lett. 2022;4(5):831–839.
Yeom SJ, Wi T-U, Ko S, Park C, Bayramova K, Jin S, Lee SW, Lee H-W. Nitrogen plasma-assisted functionalization of silicon/graphite anodes to enable fast kinetics. ACS Appl Mater Interfaces. 2022;14(4):5237–5246.
Tian M, Jin Z, Song Z, Qiao R, Yan Y, Yu H, Ben L, Armand M, Zhang H, Zhou Z, et al. Domino reactions enabling sulfur-mediated gradient interphases for high-energy lithium batteries. J Am Chem Soc. 2023;145(39):21600–21611.
Gupta A, Yang Z, Trask S, Bloom I, Johnson C. The electrochemical stabilization of silicon anodes via a locally concentrated LiNO3 complex. J Electrochem Soc. 2023;170(1):Article 010504.
Kim K, Ma H, Park S, Choi N-S. Electrolyte-additive-driven interfacial engineering for high-capacity electrodes in lithium-ion batteries: Promise and challenges. ACS Energy Lett. 2020;5(5):1537–1553.
Wan H, Xu J, Wang C. Designing electrolytes and interphases for high-energy lithium batteries. Nat Rev Chem. 2024;8:30–44.
Cao Z, Zheng X, Qu Q, Huang Y, Zheng H. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase. Adv Mater. 2021;33(38):2103178.
Liu S, Ji X, Piao N, Chen J, Eidson N, Xu J, Wang P, Chen L, Zhang J, Deng T, et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew Chem Int Ed. 2021;60(7):3661–3671.
Mao M, Ji X, Wang Q, Lin Z, Li M, Liu T, Wang C, Hu Y-S, Li H, Huang X, et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat Commun. 2023;14(1):1082.
Jamal A, Salian GD, Mathew A, Wahyudi W, Carvalho RP, Gond R, Heiskanen SK, Brandell D, Younesi R. Tris(trimethylsilyl) phosphite and lithium difluoro(oxalato)borate as electrolyte additives for LiNi0.5Mn1.5O4-graphite lithium-ion batteries. ChemElectroChem. 2023;10(16):Article e202300139.
Huang S, Wang S, Hu G, Cheong L-Z, Shen C. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives. App Sur Sci. 2018;441:265–271.
Wang C, Liu S, Xu H, Wang X, Tian G, Fan F, Liu P, Wang S, Zeng C, Shu C. Adjusting Li+ solvation structures via dipole-dipole interaction to construct inorganic-rich interphase for high-performance Li metal batteries. Small. 2024;2024:2308995.
Han Y, Xu J, Wang W, Long F, Qu Q, Wang Y, Zheng H. Implanting an electrolyte additive on a single crystal Ni-rich cathode surface for improved cycleability and safety. J Mater Chem A. 2020;8(46):24579–24589.
Liu S, Xia J, Zhang W, Wan H, Zhang J, Xu J, Rao J, Deng T, Hou S, Nan B, et al. Salt-in-salt reinforced carbonate electrolyte for Li metal batteries. Angew Chem Int Ed. 2022;134(43):Article e202210522.
Yang H, Chen X, Yao N, Piao N, Wang Z, He K, Cheng H-M, Li F. Dissolution-precipitation dynamics in ester electrolyte for high-stability lithium metal batteries. ACS Energy Lett. 2021;6(4):1413–1421.
Liu Z, Ma S, Mu X, Li R, Yin G, Zuo P. A scalable cathode chemical prelithiation strategy for advanced silicon-based lithium ion full batteries. ACS Appl Mater Interfaces. 2021;13(10):11985–11994.
Zhang Y, Wang W-P, Zhao Y, Zhang X, Guo H, Gao H, Xu D-X, Zhao Y-M, Li G, Liang J-Y, et al. Exacerbated high-temperature calendar aging of SiOx-graphite electrode induced by interparticle lithium crosstalk. Adv Funct Mater. 2024;34(2):2310309.
Yang Y, Yang Z, Li Z, Wang J, He X, Zhao H. Rational electrolyte design for interfacial chemistry modulation to enable long-term cycling Si anode. Adv Energy Mater. 2023;13(41):2302068.
Jiao S, Ren X, Cao R, Engelhard MH, Liu Y, Hu D, Mei D, Zheng J, Zhao W, Li Q, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat Energy. 2018;3(9):739–746.
Zhang K, Tian Y, Wei C, An Y, Feng J. Building stable solid electrolyte interphases (SEI) for microsized silicon anode and 5V-class cathode with salt engineered nonflammable phosphate-based lithium-ion battery electrolyte. Appl Surf Sci. 2021;553:Article 149566.
Lv L, Wang Y, Huan W, Wang Y, Zhu G, Zheng H. Effect of lithium salt type on silicon anode for lithium-ion batteries. Electrochim Acta. 2022;413:Article 140159.
Li Y, Cao Z, Wang Y, Lv L, Sun J, Xiong W, Qu Q, Zheng H. New insight into the role of fluoro-ethylene carbonate in suppressing Li-trapping for Si anodes in lithium-ion batteries. ACS Energy Lett. 2023;8(10):4193–4203.
Rynearson L, Jayawardana C, Yeddala M, Lucht BL. Improved performance of silicon-containing anodes with organic solvent-solubilized lithium nitrate. J Electrochem Soc. 2023;170(6):Article 060525.
Li B, Shao Y, He J, Chen R, Huang S, Wu Z, Li J, Wang Z, Liu G. Cyclability improvement of high voltage lithium cobalt oxide/graphite battery by use of lithium difluoro(oxalate)borate electrolyte additive. Electrochim Acta. 2022;426:Article 140783.
Jin Y, Kneusels N-JH, Magusin PCMM, Kim G, Castillo-Martínez E, Marbella LE, Kerber RN, Howe DJ, Paul S, Liu T, et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J Am Chem Soc. 2017;139(42):14992–15004.
Yeom SJ, Lee C, Kang S, Wi T-U, Chanhee L, Chae S, Cho J, Shin DO, Ryu J, Lee H-W. Native void space for maximum volumetric capacity in silicon-based anodes. Nano Lett. 2019;19(12):8793–8800.
Zhang J, Wang D, Yuan R, Li X, Li J, Jiang Z, Li A, Chen X, Song H. Simple construction of multistage stable silicon-graphite hybrid granules for lithium-ion batteries. Small. 2023;19(17):2207167.
Tao X, Wang J, Liu C, Wang H, Yao H, Zheng G, Seh ZW, Cai Q, Li W, Zhou G, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat Commun. 2016;7(1):11203.
Wang J, KoenigJr GM. Comparison of lithium diffusion coefficient measurements in tellurium electrodes via different electrochemical techniques. J Electrochem Soc. 2023;170(5):Article 050534.
Zhan R, Liu S, Wang W, Chen Z, Tu S, Wang X, Ge H, Luo H, Chai T, Ou Y, et al. Micrometer-scale single crystalline particles of niobium titanium oxide enabling an Ah-level pouch cell with superior fast-charging capability. Mater Horiz. 2023;10(11):5246–5255.
Obrovac MN, Krause LJ. Reversible cycling of crystalline silicon powder. J Electrochem Soc. 2007;154(2):A103–A108.
Chevrier VL, Liu L, Le DB, Lund J, Molla B, Reimer K, Krause LJ, Jensen LD, Figgemeier E, Eberman KW. Evaluating Si-based materials for Li-ion batteries in commercially relevant negative electrodes. J Electrochem Soc. 2014;161(5):A783–A791.
Fu F, Wang X, Zhang L, Yang Y, Chen J, Xu B, Ouyang C, Xu S, Dai F-Z, E W. Unraveling the atomic-scale mechanism of phase transformations and structural evolutions during (de)lithiation in Si anodes. Adv Funct Mater. 2023;33(37):2303936.
Gan C, Ye X, Zhang S, Chen J, Wen W, Liu Y, Peng D-L, Tang L, Luo X. Current density induced growth of Li15Si4 alloy in silicon-carbon anodes during first lithiation process. J Energy Storage. 2021;41:Article 102930.
Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).