AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A High-Concentration Edge-Nitrogen-Doped Porous Carbon Anode via Template Free Strategy for High-Performance Potassium-Ion Hybrid Capacitors

Zhen Pan1,Ke Li2,Lidong Sun1Yang Li1Zuodong Zhang1Yitai Qian1Wei Chen1( )
Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Provincial Key Laboratory of Smart Agricultural Technology and Equipment, School of Information and Computer, Anhui Agricultural University, Hefei, China

†These authors contributed equally to this work.

Show Author Information

Abstract

Developing facile and economical strategies to fabricate nitrogen-doped porous carbon anode is desirable for dual-carbon potassium ion hybrid capacitors (PIHCs). Here, a high-concentration edge-nitrogen-doped porous carbon (NPC) anode is synthesized by a template-free strategy, in which the total content of pyrrolic nitrogen and pyridinic nitrogen accounts for more than 80% of the nitrogen atoms. As a result, the NPC anode displays a capacity of 315.4 mA h g−1 at a current rate of 0.1 A g−1 and 189.1 mA h g−1 at 5 A g−1. Ex situ characterizations and density functional theory calculations demonstrate the high-concentration edge-nitrogen doping enhances K+ adsorption and electronic conductivity of carbon materials, resulting in good electrochemical performance. The assembled NPC//CMK-3 PIHC delivers an energy density of 71.1 W h kg−1 at a power density of 771.9 W kg−1 over 8,000 cycles.

References

1

Larcher D, Tarascon J-M. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19–29.

2

Luo Y, Liu L, Lei K, Shi J, Xu G, Li F, Chen J. A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem Sci. 2019;10(7):2048–2052.

3

Zhu Z, Liu Z, Yin Y, Yuan Y, Meng Y, Jiang T, Peng Q, Wang W, Chen W. Production of a hybrid capacitive storage device via hydrogen gas and carbon electrodes coupling. Nat Commun. 2022;13(1):2805.

4

Kong T, Qian Y, Li Y, Lin N, Qian Y. Plastic-derived sandwich-like porous carbon nanosheet-supported hexagonal carbon micro-flakes for K-ion storage. Chem Commun. 2023;59(28):4169–4172.

5

Gao C, Gu Y, Zhao Y, Qu L. Recent development of integrated systems of microsupercapacitors. Energy Mater Adv. 2022;2022:9804891.

6

Chen C, Wang Z, Zhang B, Miao L, Cai J, Peng L, Huang Y, Jiang J, Huang Y, Zhang L, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 2017;8:161–168.

7

Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN. High-performance nanostructured supercapacitors on a sponge. Nano Lett. 2011;11(12):5165–5172.

8

Feng Y, Rao AM, Zhou J, Lu B. Selective potassium deposition enables dendrite-resistant anodes for ultra-stable potassium metal batteries. Adv Mater. 2023;35(30):e2300886.

9

Lian X, Ju Z, Li L, Yi Y, Zhou J, Chen Z, Zhao Y, Tian Z, Su Y, Xue Z, et al. Dendrite-free and high-rate potassium metal batteries sustained by an inorganic-rich SEI. Adv Mater. 2023;2306992.

10

Tai Z, Zhang Q, Liu Y, Liu H, Dou S. Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon. 2017;123:54–61.

11

Liu X, Elia GA, Qin B, Zhang H, Ruschhaupt P, Fang S, Varzi A, Passerini S. High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett. 2019;4(11):2675–2682.

12

Chen M, Wang W, Liang X, Gong S, Liu J, Wang Q, Guo S, Yang H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv Energy Mater. 2018;8(19):1800171.

13

Li S, Zhu H, Liu Y, Han Z, Peng L, Li S, Yu C, Cheng S, Xie J. Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nat Commun. 2022;13(1):4911.

14

Wang Y, Liu J, Chen X, Kang B, Wang H-E, Xiong P, Chen Q, Wei M, Li N, Qian Q, et al. Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon. 2022;189:46–56.

15

Han J, Zhang C, Kong D, He X, Xiao J, Chen F, Tao Y, Wan Y, Yang Q-H. Flowable sulfur template induced fully interconnected pore structures in graphene artefacts towards high volumetric potassium storage. Nano Energy. 2020;72:Article 104729.

16

Yang B, Chen J, Liu L, Ma P, Liu B, Lang J, Tang Y, Yan X. 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 2019;23:522–529.

17

Ma X, Fu H, Shen J, Zhang D, Zhou J, Tong C, Rao AM, Zhou J, Fan L, Lu B. Green ether electrolytes for sustainable high-voltage potassium ion batteries. Angew Chem Int Ed. 2023;62(49):Article e202312973.

18

Zhang Y, Yi X, Fu H, Wang X, Gao C, Zhou J, Rao AM, Lu B. Reticular elastic solid electrolyte interface enabled by an industrial dye for Ultrastable potassium-ion batteries. Small Structures. 2023;5(1):2300232.

19

Lu AH, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Adv Mater. 2006;18(14):1793–1805.

20

Liu S, Zhou J, Song H. Tailoring highly N-doped carbon materials from hexamine-based MOFs: Superior performance and new insight into the roles of N configurations in Na-ion storage. Small. 2018;14(12):1703548.

21

Pan Z, Qian Y, Li Y, Xie X, Lin N, Qian Y. Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nanomicro Lett. 2023;15(1):151.

22

Niu P, Yang Y, Li Z, Ding G, Wei L, Yao G, Niu H, Min Y, Zheng F, Chen Q. Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods. Nano Res. 2022;15(9):8109–8117.

23

Cui Y, Liu W, Wang X, Li J, Zhang Y, Du Y, Liu S, Wang H, Feng W, Chen M. Bioinspired mineralization under freezing conditions: An approach to fabricate porous carbons with complicated architecture and superior K+ storage performance. ACS Nano. 2019;13(10):11582–11592.

24

Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537–1541.

25

Qian Y, Jiang S, Li Y, Yi Z, Zhou J, Tian J, Lin N, Qian Y. Understanding mesopore volume-enhanced extra-capacity: Optimizing mesoporous carbon for high-rate and long-life potassium-storage. Energy Storage Mater. 2020;29:341–349.

26

Xu Z, Zhuang X, Yang C, Cao J, Yao Z, Tang Y, Jiang J, Wu D, Feng X. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv Mater. 2016;28(10):1981–1987.

27

Tao X-S, Sun Y-G, Liu Y, Chang B-B, Liu C-T, Xu Y-S, Yang X-C, Cao A-M. Facile synthesis of hollow carbon nanospheres and their potential as stable anode materials in potassium-ion batteries. ACS Appl Mater Interfaces. 2020;12(11):13182–13188.

28

Qiu D, Guan J, Li M, Kang C, Wei J, Li Y, Xie Z, Wang F, Yang R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv Funct Mater. 2019;29(32):1903496.

29

Jian Z, Xing Z, Bommier C, Li Z, Ji X. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv Energy Mater. 2016;6(3):1501874.

30

Wang W, Zhou J, Wang Z, Zhao L, Li P, Yang Y, Yang C, Huang H, Guo S. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv Energy Mater. 2018;8(5):1701648.

31

Zhou X, Chen L, Zhang W, Wang J, Liu Z, Zeng S, Xu R, Wu Y, Ye S, Feng Y, et al. Three-dimensional ordered macroporous metal–organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019;19(8):4965–4973.

32

Wu J, Zhang X, Li Z, Yang C, Zhong W, Li W, Zhang C, Yang N, Zhang Q, Li X. Toward high-performance capacitive potassium-ion storage: A superior anode material from silicon carbide-derived carbon with a well-developed pore structure. Adv Funct Mater. 2020;30(40):2004348.

33

Le Comte A, Reynier Y, Vincens C, Leys C, Azaïs P. First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications. J Power Sources. 2017;363:34–43.

34

Cao J, Xu H, Zhong J, Li X, Li S, Wang Y, Zhang M, Deng H, Wang Y, Cui C, et al. Dual-carbon electrode-based high-energy-density potassium-ion hybrid capacitor. ACS Appl Mater Interfaces. 2021;13(7):8497–8506.

35

Zhou L, Zhang M, Wang Y, Zhu Y, Fu L, Liu X, Wu Y, Huang W. Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim Acta. 2017;232:106–113.

36

Ming F, Liang H, Zhang W, Ming J, Lei Y, Emwas A-H, Alshareef HN. Porous MXenes enable high performance potassium ion capacitors. Nano Energy. 2019;62:853–860.

Energy Material Advances
Article number: 0080
Cite this article:
Pan Z, Li K, Sun L, et al. A High-Concentration Edge-Nitrogen-Doped Porous Carbon Anode via Template Free Strategy for High-Performance Potassium-Ion Hybrid Capacitors. Energy Material Advances, 2024, 5: 0080. https://doi.org/10.34133/energymatadv.0080

83

Views

1

Downloads

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 December 2023
Accepted: 16 January 2024
Published: 04 March 2024
© 2024 Zhen Pan et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return