Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Chaga (Inonotus obliquus) is an edible herbal mushroom extensively distributed in the temperate to frigid regions of the Northern hemisphere, especially the Baltic and Siberian areas. Chaga parasites itself on the trunk of various angiosperms, especially birch tree, for decades and grows to be a shapeless black mass. The medicinal/nutraceutical use of chaga mushroom has been recorded in different ancient cultures of Ainu, Khanty, First Nations, and other Indigenous populations. To date, due to its prevalent use as folk medicine/functional food, a plethora of studies on bioactive compounds and corresponding compositional analysis has been conducted in the past 20 years. In this contribution, various nutraceutical and pharmaceutical potential, including antioxidant, anti-inflammatory, anti-tumor, immunomodulatory, antimutagenic activity, anti-virus, analgesic, antibacterial, antifungal, anti-hyperglycemic, and anti-hyperuricemia activities/effects, as well as main bioactive compounds including phenolics, terpenoids, polysaccharides, fatty acids, and alkaloids of chaga mushroom have been thoroughly reviewed, and tabulated using a total 171 original articles. However, only key bioactivities and bioactives are selectively discussed. Besides, the up-to-date toxicity concerns and risk assessment about the misuse of chaga, which limit its acceptance and use as medicinal/nutraceutical products, have also been clarified.
Ahmad, S., Lee, S.Y., Kong, H.G., Jo, E.J., Choi, H.K., Khan, R., and Lee, S.-W. (2016). Genetic determinants for pyomelanin production and its protective effect against oxidative stress in Ralstonia solanacearum. PlOS one 11(8): e0160845.
Arata, S., Watanabe, J., Maeda, M., Yamamoto, M., Matsuhashi, H., Mochizuki, M., Kagami, N., Honda, K., and Inagaki, M. (2016). Continuous intake of the Chaga mushroom (Inonotus obliquus) aqueous extract suppresses cancer progression and maintains body temperature in mice. Heliyon 2(5): e00111.
Ayoub, N., Lass, D., and Schultze, W. (2009). Volatile constituents of the medicinal fungus chaga Inonotus obliquus (Pers.: Fr.) Pilát (Aphyllophoromycetideae). Int. J. Med. Mushrooms 11(1): 55–60.
Azab, A., Nassar, A., and Azab, A.N. (2016). Anti-inflammatory activity of natural products. Molecules 21(10): 1321–1339.
Babitskaya, V., Shcherba, V., and Lkonnikova, N. (2000). Melanin complex of the fungus Inonotus obliquus. Appl. Biochem. Microbiol. 36(4): 377–381.
Babitskaya, V.G., Scherba, V.V., Ikonnikova, N.V., Bisko, N.A., and Mitropolskaya, N.Y. (2002). Melanin complex from medicinal mushroom Inonotus obliquus (Pers.: Fr.) Pilat (Chaga)(Aphyllophoromycetidae). Int. J. Med. Mushrooms 4: 139–145.
Baek, J., Roh, H.-S., Baek, K.-H., Lee, S., Lee, S., Song, S.-S., and Kim, K.H. (2018). Bioactivity-based analysis and chemical characterization of cytotoxic constituents from Chaga mushroom (Inonotus obliquus) that induce apoptosis in human lung adenocarcinoma cells. J. Ethnopharmacol. 224: 63–75.
Bai, Y.-H., Feng, Y.-Q., Mao, D.-B., and Xu, C.-P. (2012). Optimization for betulin production from mycelial culture of Inonotus obliquus by orthogonal design and evaluation of its antioxidant activity. J. Taiwan Inst. Chem. Eng. 43(5): 663–669.
Balandaykin, M.E., and Zmitrovich, I.V. (2015). Review on Chaga medicinal mushroom, Inonotus obliquus (Higher Basidiomycetes): Realm of medicinal applications and approaches on estimating its resource potential. Int. J. Med. Mushrooms 17(2): 95–104.
Battin, C., Hennig, A., Mayrhofer, P., Kunert, R., Zlabinger, G.J., Steinberger, P., and Paster, W. (2017). A human monocytic NF-κB fluorescent reporter cell line for detection of microbial contaminants in biological samples. PlOS one 12(5): e0178220.
Beauvais, A., and Latgé, J.-P. (2018). Fungal cell wall. J. Fungi 4(3): 91–98.
Bishop, G.J., and Yokota, T. (2001). Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol. 42(2): 114–120.
Biswas, T., and Dwivedi, U.N. (2019). Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance. Protoplasma. 256(6): 1463–1486.
Burmasova, M.A., Utebaeva, A.A., Sysoeva, E.V., and Sysoeva, M.A. (2019). Melanins of Inonotus Obliquus: bifidogenic and antioxidant properties. Biomolecules 9(6): 248–256.
Cha, J.-Y., Jun, B.-S., Yoo, K.-S., Hahm, J.-R., and Cho, Y.-S. (2006). Fermented chaga mushroom (Inonotus obliquus) effects on hypolipidemia and hepatoprotection in Otsuka Long-Evans Tokushima fatty (OLETF) rats. Food Sci. Biotechnol. 15(1): 122–127.
Chatterjee, S., Biswas, G., Basu, S.K., and Acharya, K. (2011). Antineoplastic effect of mushrooms: a review. Aust. J. Crop Sci. 5(7): 904–907.
Chen, C. (2007). Aqueous extract of Inonotus obliquus (Fr.) Pilat (Hymenochaetaceae) significantly inhibits the growth of sarcoma 180 by inducing apoptosis. Am. J. Pharmacol. Toxicol. 2: 10–17.
Chen, H., Yan, M., Zhu, J., and Xu, X. (2011). Enhancement of exo-polysaccharide production and antioxidant activity in submerged cultures of Inonotus obliquus by lignocellulose decomposition. J. Ind. Microbiol. Biotechnol. 38(2): 291–298.
Chen, H.-J., Chen, Y.-S., Liu, S.-L., Liou, B.-K., and Chen, C.-S. (2020a). The Influence of Submerged Fermentation of Inonotus obliquus with Control Atmosphere Treatment on Enhancing Bioactive Ingredient Contents. Appl. Biochem. Biotechnol. 191: 412–425.
Chen, H.-J., Chen, Y.-S., Liu, S.-L., Liou, B.-K., and Chen, C.-S. (2020b). The Increase of Bioactive Ingredients by Solid State Fermentation of Inonotus obliquus with Spent Substrate. Waste Biomass Valor. 11: 6725–6739.
Chen, Y., Gu, X., Huang, S.-Q., Li, J., Wang, X., and Tang, J. (2010). Optimization of ultrasonic/microwave assisted extraction (UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities. Int. J. Biol. Macromol. 46(4): 429–435.
Chen, Y., Huang, Y., Cui, Z., and Liu, J. (2015). Purification, characterization and biological activity of a novel polysaccharide from Inonotus obliquus. Int. J. Biol. Macromol. 79: 587–594.
Chen, Y.F., Zheng, J.J., Qu, C., Xiao, Y., Li, F.F., Jin, Q.X., Li, H.H., Meng, F.P., Jin, G.H., and Jin, D. (2019b). Inonotus obliquus polysaccharide ameliorates dextran sulphate sodium induced colitis involving modulation of Th1/Th2 and Th17/Treg balance. Artif. Cells Nanomed. Biotechnol. 47(1): 757–766.
Chhikara, N., Devi, H.R., Jaglan, S., Sharma, P., Gupta, P., and Panghal, A. (2018). Bioactive compounds, food applications and health benefits of Parkia speciosa (stinky beans): a review. Agric. Food Secur. 7(1): 46–54.
Choi, S.Y., Hur, S.J., An, C.S., Jeon, Y.H., Jeoung, Y.J., Bak, J.P., and Lim, B.O. (2010). Anti-inflammatory effects of Inonotus obliquus in colitis induced by dextran sodium sulfate. Biomed Res. Int. 2010: 1–5.
Chou, Y.J., Kan, W.C., Chang, C.M., Peng, Y.J., Wang, H.Y., Yu, W.C., Cheng, Y.H., Jhang, Y.R., Liu, H.W., and Chuu, J.J. (2016). Renal protective effects of low molecular weight of Inonotus obliquus polysaccharide (LIOP) on HFD/STZ-induced nephropathy in mice. Int. J. Mol. Sci. 17(9): 1535–1551.
Chung, M.J., Chung, C.-K., Jeong, Y., and Ham, S.-S. (2010). Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing Sarcoma-180 cells. Nutr. Res. Pract. 4(3): 177–182.
Cottesfeld, L.M.J. (1992). Short Communication: use of cinder conk (lnonotus obliquus) by the Gitksan of Northwestern British Columbia, Canada. J. Ethnobiol. 12(1): 153–156.
Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. Nature 420(6917): 860–867.
Cruz, A., Pimentel, L., Rodríguez-Alcalá, L.M., Fernandes, T., and Pintado, M. (2016). Health benefits of edible mushrooms focused on Coriolus versicolor: A review. J. Food Nutr. Res. 4(12): 773–781.
Cui, J., and Chisti, Y. (2003). Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnol. Adv. 21(2): 109–122.
Cui, Y., Kim, D.-S., and Park, K.-C. (2005). Antioxidant effect of Inonotus obliquus. J. Ethnopharmacol. 96(1-2): 79–85.
Dalilur Rahman, M., and Richards, G.N. (1987). Interference by flavonoids in the phenol―sulfuric acid analysis of carbohydrates. Carbohydr. Res. 170(1): 112–115.
Debnath, T., Hasnat, M.A., Pervin, M., Lee, S.Y., Park, S.R., Kim, D.H., Kweon, H.J., Kim, J.M., and Lim, B.O. (2012). Chaga mushroom (Inonotus obliquus) grown on germinated brown rice suppresses inflammation associated with colitis in mice. Food Sci. Biotechnol. 21(5): 1235–1241.
Deng, G., Lin, H., Seidman, A., Fornier, M., D'Andrea, G., Wesa, K., Yeung, S., Cunningham-Rundles, S., Vickers, A.J., and Cassileth, B. (2009). A phase Ⅰ/Ⅱ trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J. Cancer Res. Clin. Oncol. 135(9): 1215–1221.
Diao, B.-Z., Jin, W.-R., and Yu, X.-J. (2014). Protective effect of polysaccharides from Inonotus obliquus on streptozotocin-induced diabetic symptoms and their potential mechanisms in rats. Evid. Based Complement. Alternat. Med. 2014: 1–5.
Ding, X., Ge, B., Wang, M., Zhou, H., Sang, R., Yu, Y., Xu, L., and Zhang, X. (2020). Inonotus obliquus polysaccharide ameliorates impaired reproductive function caused by Toxoplasma gondii infection in male mice via regulating Nrf2-PI3K/AKT pathway. Int. J. Biol. Macromol. 151: 449–458.
Dosychev, E., and Bystrova, V. (1973). Treatment o psoriasis using "Chaga" fungus preparations. Vestn. Dermatol. Venerol. 47(5): 79–83.
Douros, A., Bronder, E., Andersohn, F., Klimpel, A., Kreutz, R., Garbe, E., and Bolbrinker, J. (2016). Herb-induced liver injury in the Berlin case-control surveillance study. Int. J. Mol. Sci. 17(1): 114–124.
Duru, K.C., Kovaleva, E.G., Danilova, I.G., and van der Bijl, P. (2019). The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies. Phytother. Res. 33(8): 1966–1980.
Duru, M.E., and Çayan, G.T. (2015). Biologically active terpenoids from mushroom origin: a review. Rec. Nat. Prod. 9(4): 456–483.
Eid, J.I., and Das, B. (2020a). Molecular insights and cell cycle assessment upon exposure to chaga (Inonotus obliquus) mushroom polysaccharides in zebrafish (Danio rerio). Sci. Rep. 10(1): 1–9.
Eisenman, H.C., and Casadevall, A. (2012). Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 93(3): 931–940.
Fan, L., Ding, S., Ai, L., and Deng, K. (2012). Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus. Carbohydr. Polym. 90(2): 870–874.
Fedotov, A., and Rodsolaĭnen, I. (1981). Effect of befungin on the central nervous system in peptic ulcer. Klin. Med. 59(7): 22–25.
Fradj, N., Gonçalves dos Santos, K.C., de Montigny, N., Awwad, F., Boumghar, Y., Germain, H., and Desgagné-Penix, I. (2019). RNA-Seq de Novo Assembly and Differential Transcriptome Analysis of Chaga (Inonotus obliquus) Cultured with Different Betulin Sources and the Regulation of Genes Involved in Terpenoid Biosynthesis. Int. J. Mol. Sci. 20(18): 4334–4360.
Gao, Y., Chen, G., Dai, X., Ye, J., and Zhou, S. (2004a). A phase Ⅰ/Ⅱ study of ling zhi mushroom Ganoderma lucidum (W. Curt.: Fr.) Lloyd (Aphyllophoromycetideae) extract in patients with coronary heart disease. Int. J. Med. Mushrooms 6(4): 327–334.
Gao, Y., Lan, J., Dai, X., Ye, J., and Zhou, S. (2004b). A phase Ⅰ/Ⅱ study of Ling Zhi mushroom Ganoderma lucidum (W. Curt.: Fr.) Lloyd (Aphyllophoromycetideae) extract in patients with type Ⅱ diabetes mellitus. Int. J. Med. Mushrooms 6(1): 33–40.
Geng, Y., Lu, Z.-M., Huang, W., Xu, H.-Y., Shi, J.-S., and Xu, Z.-H. (2013). Bioassay-guided isolation of DPP-4 inhibitory fractions from extracts of submerged cultured of Inonotus obliquus. Molecules 18(1): 1150–1161.
Géry, A., Dubreule, C., André, V., Rioult, J.P., Bouchart, V., Heutte, N., Eldin de Pecoulas, P., Krivomaz, T., and Garon, D. (2018a). Chaga (Inonotus obliquus), a future potential medicinal fungus in oncology? A chemical study and a comparison of the cytotoxicity against human lung adenocarcinoma cells (A549) and human bronchial epithelial cells (BEAS-2B). Integr. Cancer Ther. 17(3): 832–843.
Glamočlija, J., Ćirić, A., Nikolić, M., Fernandes, Â., Barros, L., Calhelha, R.C., Ferreira, I.C., Soković, M., and van Griensven, L.J. (2015). Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal "mushroom". J. Ethnopharmacol. 162: 323–332.
Gómez, B.L., and Nosanchuk, J.D. (2003). Melanin and fungi. Curr. Opin. Infect. Dis. 16(2): 91–96.
Gordon, M., Bihari, B., Goosby, E., Gorter, R., Greco, M., Guralnik, M., Mimura, T., Rudinicki, V., Wong, R., and Kaneko, Y. (1998). A placebo-controlled trial of the immune modulator, lentinan, in HIV-positive patients: a phase Ⅰ/Ⅱ trial. J. Med. 29(5-6): 305–330.
Grishko, V., Tolmacheva, I., and Pereslavtseva, A. (2015). Triterpenoids with a five-membered A-ring: distribution in nature, transformations, synthesis, and biological activity. Chem. Nat. Compd. 51(1): 1–21.
Haanen, C., and Vermes, I. (1995). Apoptosis and inflammation. Mediators Inflamm. 4(1): 5–15.
Ham, S.S., Kim, S.H., Moon, S.Y., Chung, M.J., Cui, C.B., Han, E.K., Chung, C.K., and Choe, M. (2009). Antimutagenic effects of subfractions of Chaga mushroom (Inonotus obliquus) extract. Mutat. Res. Genet. Toxicol. Environ. Mutagen 672(1): 55–59.
Ham, S.-S., Oh, S., Kim, Y.-K., Shin, K., Chang, H.-Y., and Chung, G.-H. (2003). Antioxidant and genotoxic inhibition activity of ethanol extract from the Inonotus obliquus. J. Korean Soc. Food Sci. Nutr. 32: 1071–1075.
Hamid, K., Alqahtani, A., Kim, M.S., Cho, J.L., Cui, P.H., Li, C.G., Groundwater, P.W., and Li, G.Q. (2015). Tetracyclic triterpenoids in herbal medicines and their activities in diabetes and its complications. Curr. Top. Med. Chem. 15(23): 2406–2430.
Han, S.B., Park, S.H., Lee, K.H., Lee, C.W., Lee, S.H., Kim, H.C., Kim, Y.S., Lee, H.S., and Kim, H.M. (2001). Polysaccharide isolated from the radix of Platycodon grandiflorum selectively activates B cells and macrophages but not T cells. Int. Immunopharmacol. 1(11): 1969–1978.
Han, Y., Nan, S., Fan, J., Chen, Q., and Zhang, Y. (2019). Inonotus obliquus polysaccharides protect against Alzheimer's disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects. Int. J. Biol. Macromol. 131: 769–778.
Handa, N., Yamada, T., and Tanaka, R. (2010). An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry 71(14-15): 1774–1779.
Hapuarachchi, J.R., Chalmers, A.H., Winefield, A.H., and Blake-Mortimer, J.S. (2003). Changes in clinically relevant metabolites with psychological stress parameters. Behav. Med. 29(2): 52–59.
He, J., Feng, X.-Z., Lu, Y., and Zhao, B. (2001). Three new triterpenoids from Fuscoporia obliqua. J. Asian Nat. Prod. Res. 3(1): 55–61.
Hou, R., Wang, H.-Y., and Chen, Z.-A. (2018). A study on apoptosis of fermented fnonotus obliquus on hepatocellular carcinoma HepG2 cells. J. Postgrad. Med. 31(1): 25–28.
Houlden, R.L. (2018). 2018 Clinical Practice Guidelines, Introduction. Can. J. Diabetes 42: 1–6.
Hu, H., Zhang, Z., Lei, Z., Yang, Y., and Sugiura, N. (2009). Comparative study of antioxidant activity and antiproliferative effect of hot water and ethanol extracts from the mushroom Inonotus obliquus. J. Biosci. Bioeng. 107(1): 42–48.
Hu, Y., Sheng, Y., Yu, M., Li, K., Ren, G., Xu, X., and Qu, J. (2016). Antioxidant activity of Inonotus obliquus polysaccharide and its amelioration for chronic pancreatitis in mice. Int. J. Biol. Macromol. 87: 348–356.
Hu, Y., Shi, S., Lu, L., Teng, C., Yu, S., Wang, X., Yu, M., Liang, J., and Qu, J. (2017a). Effects of selenizing modification on characteristics and antioxidant activities of Inonotus obliquus polysaccharide. Macromol. Res. 25(3): 222–230.
Hu, Y., Teng, C., Yu, S., Wang, X., Liang, J., Bai, X., Dong, L., Song, T., Yu, M., and Qu, J. (2017b). Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice. AMB Express 7(1): 39.
Hua, K.F., Hsu, H.Y., Chao, L.K., Chen, S.T., Yang, W.B., Hsu, J., and Wong, C.H. (2007). Ganoderma lucidum polysaccharides enhance CD14 endocytosis of LPS and promote TLR4 signal transduction of cytokine expression. J. Cell. Physiol. 212(2): 537–550.
Huang, S.-Q., Ding, S., and Fan, L. (2012). Antioxidant activities of five polysaccharides from Inonotus obliquus. Int. J. Biol. Macromol. 50(5): 1183–1187.
Hwang, B.S., Lee, I.-K., and Yun, B.-S. (2016). Phenolic compounds from the fungus Inonotus obliquus and their antioxidant properties. J. Antibiot. 69(2): 108–110.
Hyun, K.W., Jeong, S.C., Lee, D.H., Park, J.S., and Lee, J.S. (2006). Isolation and characterization of a novel platelet aggregation inhibitory peptide from the medicinal mushroom, Inonotus obliquus. Peptides 27(6): 1173–1178.
Ichimura, T., Watanabe, O., and Maruyama, S.J.B. (1998). Inhibition of HIV-1 protease by water-soluble lignin-like substance from an edible mushroom, Fuscoporia obliqua. Biosci. Biotechnol. Biochem. 62(3): 575–577.
Jarosz, A., Skórska, M., Rzymowska, J., Kochmanska-Rdest, J., and Malarczyk, E. (1990). Effect of the extracts from fungus Inonotus obliquus on catalase level in HeLa and nocardia cells. Acta Biochim. Pol. 37(1): 149–151.
Javed, S., Mitchell, K., Sidsworth, D., Sellers, S.L., Reutens-Hernandez, J., Massicotte, H.B., Egger, K.N., Lee, C.H., and Payne, G.W. (2019). Inonotus obliquus attenuates histamine-induced microvascular inflammation. PLoS one 14(8): e0220776.
Jiang, S., Shi, F., Lin, H., Ying, Y., Luo, L., Huang, D., and Luo, Z. (2019). Inonotus obliquus polysaccharides induces apoptosis of lung cancer cells and alters energy metabolism via the LKB1/AMPK axis. Int. J. Biol. Macromol. 151: 1277–1286.
Jing, J., and Teschke, R. (2018). Traditional Chinese medicine and herb-induced liver injury: comparison with drug-induced liver injury. J. Clin. Transl. Hepatol. 6(1): 57–68.
Joo, J.I., Kim, D.H., and Yun, J.W. (2010). Extract of Chaga mushroom (Inonotus obliquus) stimulates 3t3-l1 adipocyte differentiation. Phytother. Res. 24(11): 1592–1599.
Ju, H.K., Chung, H.W., Hong, S.-S., Park, J.H., Lee, J., and Kwon, S.W. (2010). Effect of steam treatment on soluble phenolic content and antioxidant activity of the Chaga mushroom (Inonotus obliquus). Food Chem. 119(2): 619–625.
Kahlos, K., and Hiltunen, R. (1986). 3β, 22-dihydroxylanosta-7, 9 (11): 24-triene: a new, minor compound from Inonotus obliquus. Planta Med. 52(06): 495–496.
Kahlos, K., and Hiltunen, R. (1987). Gas chromatographic mass spectrometric study of some sterols and lupines from Inonotus obliquus. Acta Pharm. Fenn. 96(2): 85–80.
Kahlos, K., Hintsanen, E., Seppänen-Laakso, T., and Hiltunen, R. (1989). Lipid compounds of three species of cultivated Inonotus. Planta Med. 55(07): 621–622.
Kahlos, K., Toikka, R., and Hiltunen, R. (1992). Effect of some glucosamine derivatives on the production of fungal volatiles of Inonotus obliquus in vitro. Planta Med. 58(S1): 610–610.
Kang, J.H., Jang, J.E., Mishra, S.K., Lee, H.J., Nho, C.W., Shin, D., Jin, M., Kim, M.K., Choi, C., and Oh, S.H. (2015). Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. J. Ethnopharmacol. 173: 303–312.
Kidd, P.M. (2000). The use of mushroom glucans and proteoglycans in cancer treatment. Altern. Med. Rev. 5(1): 4–27.
Kikuchi, Y., Seta, K., Ogawa, Y., Takayama, T., Nagata, M., Taguchi, T., and Yahata, K. (2014). Chaga mushroom-induced oxalate nephropathy. Clin. Nephrol. 81(6): 440–444.
Kim, H.G., Yoon, D.H., Kim, C.H., Shrestha, B., Chang, W.C., Lim, S.Y., Lee, W.H., Han, S.G., Lee, J.O., Lim, M.H., Kim, G.Y., Choi, S., Song, W.O., Sung, J.M., Hwang, K.C., and Kim, T.W. (2007). Ethanol extract of Inonotus obliquus inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Med. Food 10(1): 80–89.
Kim, H.S., Kim, J.Y., Kang, J.S., Kim, H.M., Kim, Y.O., Hong, I.P., Lee, M.K., Hong, J.T., Kim, Y., and Han, S.-B. (2010). Cordlan polysaccharide isolated from mushroom Cordyceps militaris induces dendritic cell maturation through toll-like receptor 4 signalings. Food Chem. Toxicol. 48(7): 1926–1933.
Kim, J.H., Sung, N.Y., Kwon, S.K., Srinivasan, P., Song, B.S., Choi, J.I., Yoon, Y., Kim, J.K., Byun, M.W., Kim, M.R., and Lee, J.W. (2009). γ-Irradiation improves the color and antioxidant properties of Chaga mushroom (Inonotus obliquus) extract. J. Med. Food. 12(6): 1343–1347.
Kim, J.-Y., Byeon, S.-E., Lee, Y.-G., Lee, J.-Y., Park, J., Hong, E.-K., and Cho, J.-Y. (2008a). Immunostimulatory activities of polysaccharides from liquid culture of pine-mushroom Tricholoma matsutake. J. Microbiol. Biotechnol. 18(1): 95–103.
Kim, M.Y., Seguin, P., Ahn, J.K., Kim, J.J., Chun, S.C., Kim, E.H., Seo, S.H., Kang, E.Y., Kim, S.L., Park, Y.J., Ro, H.M., and Chung, I.M. (2008b). Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem. 56(16): 7265–7270.
Kim, Y.J., Park, J., Min, B.S., and Shim, S.H. (2011). Chemical constituents from the sclerotia of Inonotus obliquus. J. Korean Soc. Appl. Biol. Chem. 54(2): 287–294.
Kim, Y.O., Han, S.B., Lee, H.W., Ahn, H.J., Yoon, Y.D., Jung, J.K., Kim, H.M., and Shin, C.S. (2005). Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sci. 77(19): 2438–2456.
Kim, Y.O., Park, H.W., Kim, J.H., Lee, J.Y., Moon, S.H., and Shin, C.S. (2006). Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sci. 79(1): 72–80.
Kimura, I., Yoshikawa, M., Kobayashi, S., Sugihara, Y., Suzuki, M., Oominami, H., Murakami, T., Matsuda, H., and Doiphode, V.V. (2001). New triterpenes, myrrhanol A and myrrhanone A, from guggul-gum resins, and their potent anti-inflammatory effect on adjuvant-induced air-pouch granuloma of mice. Bioorganic Med. Chem. Lett. 11(8): 985–989.
Kiraly, O., Gong, G., Olipitz, W., Muthupalani, S., and Engelward, B.P. (2015). Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLOS Genet. 11(2): e1004901.
Koyama, T., Gu, Y., and Taka, A. (2008). Fungal medicine, Fuscoporia obliqua, as a traditional herbal medicine: its bioactivities, in vivo testing and medicinal effects. Asian Biomed. 2(6): 459–469.
Koyama, T., Taka, A., and Togashi, H. (2006). Cardiovascular effects produced by a traditional fungal medicine, Fuscoporia obliqua extract, and microvessels in the left ventricular wall of stroke-prone spontaneously hypertensive rat (SHRSP). Clin. Hemorheol. Microcirc. 35(4): 491–498.
Kukulyanskaya, T., Kurchenko, N., Kurchenko, V., and Babitskaya, V. (2002). Physicochemical properties of melanins produced by the sterile form of Inonotus obliquus ("Chagi") in natural and cultivated fungus. Appl. Biochem. Microbiol. 38(1): 58–61.
Kuriyama, I., Nakajima, Y., Nishida, H., Konishi, T., Takeuchi, T., Sugawara, F., Yoshida, H., and Mizushina, Y. (2013). Inhibitory effects of low molecular weight polyphenolics from Inonotus obliquus on human DNA topoisomerase activity and cancer cell proliferation. Mol. Med. Rep. 8(2): 535–542.
Lee, H.S., Kim, E.J., and Kim, S.H. (2015a). Ethanol extract of Innotus obliquus (Chaga mushroom) induces G1 cell cycle arrest in HT-29 human colon cancer cells. Nutr. Res. Pract. 9(2): 111–116.
Lee, I.-K., Kim, Y.-S., Jang, Y.-W., Jung, J.-Y., and Yun, B.-S. (2007). New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorganic Med. Chem. Lett. 17(24): 6678–6681.
Lee, I.-K., and Yun, B.-S. (2011). Styrylpyrone-class compounds from medicinal fungi Phellinus and Inonotus spp., and their medicinal importance. J. Antibiot. 64(5): 349–359.
Lee, J.H., and Hyun, C.K. (2014a). Insulin-sensitizing and beneficial lipid-metabolic effects of the water-soluble melanin complex extracted from Inonotus obliquus. Phytother. Res. 28(9): 1320–1328.
Lee, J.S., Lee, K.R., Lee, S., Lee, H.J., Yang, H.-S., Yeo, J., Park, J.M., Choi, B.H., and Hong, E.K. (2017a). Polysaccharides isolated from liquid culture broth of Inonotus obliquus inhibit the invasion of human non-small cell lung carcinoma cells. Biotechnol. Bioprocess Eng. 22(1): 45–51.
Lee, K.R., Lee, J.S., Kim, Y.R., Song, I.G., and Hong, E.K. (2014b). Polysaccharide from Inonotus obliquus inhibits migration and invasion in B16-F10 cells by suppressing MMP-2 and MMP-9 via downregulation of NF-κB signaling pathway. Oncol. Rep. 31(5): 2447–2453.
Lee, K.R., Lee, J.S., Lee, S., Son, Y.K., Kim, G.R., Sim, Y.C., Song, J.E., Ha, S.-J., and Hong, E.K. (2016). Polysaccharide isolated from the liquid culture broth of Inonotus obliquus suppresses invasion of B16-F10 melanoma cells via AKT/NF-κB signaling pathway. Mol. Med. Rep. 14(5): 4429–4435.
Lee, K.R., Lee, J.S., Song, J.E., Ha, S.J., and Hong, E.K. (2014c). Inonotus obliquus-derived polysaccharide inhibits the migration and invasion of human non-small cell lung carcinoma cells via suppression of MMP-2 and MMP-9. Int. J. Oncol. 45(6): 2533–2540.
Lee, K.-H., Kim, H., Oh, S.-H., Hwang, J.-H., and Yu, K.-W. (2017b). Immunomodulating Activity of Crude Polysaccharide from Inonotus obliquus Sclerotia by Fractionation including MeOH Reflux. Korean J. Food Nutr. 30(1): 96–104.
Lee, M.-W., Hur, H., Chang, K.-C., Lee, T.-S., Ka, K.-H., and Jankovsky, L. (2008). Introduction to distribution and ecology of sterile conks of Inonotus obliquus. Mycobiology 36(4): 199–202.
Lee, S.H., Hwang, H.S., and Yun, J.W. (2009). Antitumor activity of water extract of a mushroom, Inonotus obliquus, against HT-29 human colon cancer cells. Phytother. Res. 23(12): 1784–1789.
Lee, S., Lee, H.Y., Park, Y., Ko, E.J., Ban, T.H., Chung, B.H., Lee, H.S., and Yang, C.W. (2020). Development of End Stage Renal Disease after Long-Term Ingestion of Chaga Mushroom: Case Report and Review of Literatures. J. Korean Med. Sci. 35(19): e122.
Lee, W.-J., Kim, H.-W., Lee, H.-Y., and Son, C.-G. (2015b). Systematic review on herb-induced liver injury in Korea. Food Chem. Toxicol. 84: 47–54.
Lemieszek, M.K., Langner, E., Kaczor, J., Kandefer-Szerszen, M., Sanecka, B., Mazurkiewicz, W., and Rzeski, W. (2011). Anticancer effects of fraction isolated from fruiting bodies of Chaga medicinal mushroom, Inonotus obliquus (Pers.: Fr.) Pilát (Aphyllophoromycetideae): in vitro studies. Int. J. Med. Mushrooms 13(2): 131–143.
Lewandowski, S., Rodgers, A.L., Laube, N., von Unruh, G., Zimmermann, D., and Hesse, A. (2005). Oxalate and its handling in a low stone risk vs a stone-prone population group. World J. Urol. 23(5): 330–333.
Lewandowski, S., Rodgers, A., and Schloss, I. (2001). The influence of a high-oxalate/low-calcium diet on calcium oxalate renal stone risk factors in non-stone-forming black and white South African subjects. BJU Int. 87(4): 307–311.
Li, Z., Mei, J., Jiang, L., Geng, C., Li, Q., Yao, X., and Cao, J. (2019). Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes) Polysaccharides Suppress Tacrine-induced Apoptosis by ROS-scavenging and Mitochondrial Pathway in HepG2 Cells. Int. J. Med. Mushrooms 21(6): 583–593.
Liang, L., Zhang, Z., and Wang, H. (2009). Antioxidant activities of extracts and subfractions from Inonotus Obliquus. Int. J. Food Sci. Nutr. 60(sup2): 175–184.
Limón-Pacheco, J., and Gonsebatt, M.E. (2009). The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen 674(1-2): 137–147.
Lin, N.-H., Yang, H.-W., Su, Y.-J., and Chang, C.-W. (2019). Herb induced liver injury after using herbal medicine: A systemic review and case-control study. Medicine 98(13): e14992.
Liu, C., Zhao, C., Pan, H.H., Kang, J., Yu, X.T., Wang, H.Q., Li, B.M., Xie, Y.Z., and Chen, R.Y. (2014). Chemical constituents from Inonotus obliquus and their biological activities. J. Nat. Prod. 77(1): 35–41.
Liu, P., Xue, J., Tong, S., Dong, W., and Wu, P. (2018). Structure Characterization and Hypoglycaemic Activities of Two Polysaccharides from Inonotus obliquus. Molecules 23(8): 1948.
Liu, Z., Yu, D., Li, L., Liu, X., Zhang, H., Sun, W., Lin, C.C., Chen, J., Chen, Z., Wang, W., and Jia, W. (2019). Three-phase partitioning for the extraction and purification of polysaccharides from the immunomodulatory medicinal mushroom Inonotus obliquus. Molecules 24(3): 403.
Lu, X., Chen, H., Dong, P., Fu, L., and Zhang, X. (2010). Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom Inonotus obliquus. J. Sci. Food Agric. 90(2): 276–280.
Lumlertgul, N., Siribamrungwong, M., Jaber, B.L., and Susantitaphong, P. (2018). Secondary oxalate nephropathy: a systematic review. Kidney Int. Rep. 3(6): 1363–1372.
Ma, G., Yang, W., Zhao, L., Pei, F., Fang, D., and Hu, Q. (2018). A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci. Hum. Wellness 7(2): 125–133.
Ma, L., Chen, H., Dong, P., and Lu, X. (2013). Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 139(1-4): 503–508.
Ma, L., Chen, H., Zhang, Y., Zhang, N., and Fu, L. (2012). Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus. Carbohydr. Polym. 89(2): 371–378.
Maenaka, T., Oshima, M., Itokawa, Y., Masubuchi, T., Takagi, Y., Choi, J.S., Ishida, T., and Gu, Y. (2008). Effects of Fuscoporia obliqua on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients. J. Tradit. Chin. Med. 28(1): 49–57.
Mandal, S.M., Chakraborty, D., and Dey, S. (2010). Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 5(4): 359–368.
Mazurkiewicz, W. (2006). Analysis of aqueous extract of Inonotus obliquus. Acta Pol. Pharm. Drug Res. 63(8): 497–501.
Merdivan, S., and Lindequist, U. (2017). Ergosterol peroxide: a mushroom-derived compound with promising biological activities− a review. Int. J. Med. Mushrooms 19(2): 93–105.
Mishra, S.K., Kang, J.-H., Kim, D.-K., Oh, S.H., and Kim, M.K. (2012). Orally administered aqueous extract of Inonotus obliquus ameliorates acute inflammation in dextran sulfate sodium (DSS)-induced colitis in mice. J. Ethnopharmacol. 143(2): 524–532.
Mishra, S.K., Kang, J-H., Song, K-H., Park, M.S., Kim, D-K., Park, Y-J., Choi, C., Kim, H.M., Kim, M.K., and Oh, S.H. (2013). Inonotus obliquus suppresses proliferation of colorectal cancer cells and tumor growth in mice models by downregulation of β-catenin/NF-κB-signaling pathways. Eur. J. Inflamm. 11(3): 615–629.
Miura, T. (2007). Antidiabetic activity of Fuscoporia oblique and Samallanthus sonchifolius in genetically type 2 diabetic mice. J. Tradit. Med. 24(2): 47–50.
Mizuno, T., Zhuang, C., Abe, K., Okamoto, H., Kiho, T., Ukai, S., Leclerc, S., and Meijer, L. (1999). Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus (Pers.: Fr.) Pil. (Aphyllophoromycetideae). Int. J. Med. Mushrooms 1(4): 301–316.
Moghaddam, M.G., Ahmad, F.B.H., and Samzadeh-Kermani, A. (2012). Biological activity of betulinic acid: a review. Pharmacol. Pharm. 3: 119–123.
Mu, H., Zhang, A., Zhang, W., Cui, G., Wang, S., and Duan, J. (2012). Antioxidative properties of crude polysaccharides from Inonotus obliquus. Int. J. Mol. Sci. 13(7): 9194–9206.
Muszyńska, B., Grzywacz-Kisielewska, A., Kała, K., and Gdula-Argasińska, J. (2018). Anti-inflammatory properties of edible mushrooms: A review. Food Chem. 243: 373–381.
Nagajyothi, P., Sreekanth, T., Lee, J.-I., and Lee, K.D. (2014). Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J. Photochem. Photobiol. B 130: 299–304.
Najafzadeh, M., Reynolds, P.D., Baumgartner, A., Jerwood, D., and Anderson, D. (2007). Chaga mushroom extract inhibits oxidative DNA damage in lymphocytes of patients with inflammatory bowel disease. Biofactors 31(3-4): 191–200.
Nakajima, Y., Nishida, H., Matsugo, S., and Konishi, T. (2009). Cancer cell cytotoxicity of extracts and small phenolic compounds from Chaga [Inonotus obliquus (Persoon) Pilat]. J. Med. Food 12(3): 501–507.
Nakajima, Y., Sato, Y., and Konishi, T. (2007). Antioxidant small phenolic ingredients in Inonotus obliquus (persoon) Pilat (Chaga). Chem. Pharm. Bull. 55(8): 1222–1226.
Nakamura, S., Iwami, J., Matsuda, H., Mizuno, S., and Yoshikawa, M. (2009). Absolute stereostructures of inoterpenes A-F from sclerotia of Inonotus obliquus. Tetrahedron 65(12): 2443–2450.
Nakata, T., Yamada, T., Taji, S., Ohishi, H., Wada, S.-I., Tokuda, H., Sakuma, K., and Tanaka, R. (2007). Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorg. Med. Chem. 15(1): 257–264.
Nguyen, H.T., Ho, D.V., Nguyen, P.D.Q., Vo, H.Q., Do, T.T., and Raal, A. (2018). Cytotoxic Evaluation of Compounds Isolated from the Aerial Parts of Hedyotis pilulifera and Methanol Extract of Inonotus obliquus. Nat. Prod. Commun. 13(8): 939–941.
Nikitina, S., Habibrakhmanova, V., and Sysoeva, M. (2016). Chemical composition and biological activity of triterpenes and steroids of chaga mushroom. Biochem. (Mosc.), Suppl., Ser. B Biomed. chem. 10(1): 63–69.
Ning, X., Luo, Q., Li, C., Ding, Z., Pang, J., and Zhao, C. (2014). Inhibitory effects of a polysaccharide extract from the Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes), on the proliferation of human neurogliocytoma cells. Int. J. Med. Mushrooms 16(1): 29–36.
Niu, H., Song, D., Mu, H., Zhang, W., Sun, F., and Duan, J. (2016). Investigation of three lignin complexes with antioxidant and immunological capacities from Inonotus obliquus. Int. J. Biol. Macromol. 86: 587–593.
Nomura, M., Takahashi, T., Uesugi, A., Tanaka, R., and Kobayashi, S. (2008). Inotodiol, a lanostane triterpenoid, from Inonotus obliquus inhibits cell proliferation through caspase-3-dependent apoptosis. Anticancer Res. 28(5A): 2691–2696.
Ohno, S., Sumiyoshi, Y., Hashine, K., Shirato, A., Kyo, S., and Inoue, M. (2011). Phase I clinical study of the dietary supplement, Agaricus blazei Murill, in cancer patients in remission. Evid. Based Complement. Alternat. Med. 2011: 192381.
Olennikov, D., Tankhaeva, L., Rokhin, A., and Agafonova, S. (2012). Physicochemical properties and antioxidant activity of melanin fractions from Inonotus obliquus sclerotia. Chem. Nat. Compd. 48(3): 396–403.
Ooi, V.E.C., and Liu, F. (2000). Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 7(7): 715–729.
Pan, H., Han, Y., Huang, J., Yu, X., Jiao, C., Yang, X., Dhaliwal, P., Xie, Y., and Yang, B.B. (2015). Purification and identification of a polysaccharide from medicinal mushroom Amauroderma rude with immunomodulatory activity and inhibitory effect on tumor growth. Oncotarget 6(19): 17777–17791.
Parfenov, A., Vyshtakalyuk, A., Sysoeva, M., Sysoeva, E., Latipova, A., Gumarova, L., and Zobov, V. (2019). Hepatoprotective Effect of Inonotus obliquus Melanins: In Vitro and In Vivo Studies. Bionanoscience 9(2): 528–538.
Park, E., Jeon, K.-I., and Byun, B.-H. (2005a). Ethanol extract of Inonotus obliquus shows antigenotoxic effect on hydrogen peroxide induced DNA damage in human lymphocytes. Cancer Prev. Res. 10(1): 54–59.
Park, S-K., Kim, G.-Y., Lim, J.-Y., Kwak, J.-Y., Bae, Y.-S., Lee, J.-D., Oh, Y.-H., Ahn, S.-C., and Park, Y.-M. (2003). Acidic polysaccharides isolated from Phellinus linteus induce phenotypic and functional maturation of murine dendritic cells. Biochem. Biophys. Res. Commun. 312(2): 449–458.
Park, Y.K., Lee, H.B., Jeon, E.-J., Jung, H.S., and Kang, M.-H. (2004). Chaga mushroom extract inhibits oxidative DNA damage in human lymphocytes as assessed by comet assay. Biofactors 21(1-4): 109–112.
Park, Y.-M., Won, J.-H., Kim, Y.-H., Choi, J.-W., Park, H.-J., and Lee, K.-T. (2005b). In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J. Ethnopharmacol. 101(1-3): 120–128.
Plonka, P.M., and Grabacka, M. (2006). Melanin synthesis in microorganisms--biotechnological and medical aspects. Acta Biochim. Pol. 53(3): 429–443.
Poyedinok, N., Mykhaylova, O., Sergiichuk, N., Tugay, T., Tugay, A., Lopatko, S., and Matvieieva, N. (2020). Effect of Colloidal Metal Nanoparticles on Biomass, Polysaccharides, Flavonoids, and Melanin Accumulation in Medicinal Mushroom Inonotus obliquus (Ach.: Pers.) Pilát. Appl. Biochem. Biotechnol. 191(3): 1315–1325.
Poyedinok, N., Mykhaylova, O., Tugay, T., Tugay, A., Negriyko, A., and Dudka, I. (2015). Effect of light wavelengths and coherence on growth, enzymes activity, and melanin accumulation of liquid-cultured Inonotus obliquus (Ach.: Pers.) Pilát. Biotechnol. Appl. Biochem. 176(2): 333–343.
Redmile-Gordon, M., Armenise, E., White, R.P., Hirsch, P., and Goulding, K. (2013). A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts. Soil Biol. Biochem. 67: 166–173.
Reid, D. (1976). Inonotus obliquus (pers. Ex Fr.) pilat in Britain. Trans. Brit. Mycol. Soc. 67(2): 329–332.
Ren, G.-J., and Dai, Y.-C. (2018). Inonotus castanopsidis sp. nov. (Hymenochaetaceae, Basidiomycota) from southwestern China. Phytotaxa 338(1): 117–124.
Reuter, S., Gupta, S.C., Chaturvedi, M.M., and Aggarwal, B.B. (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49(11): 1603–1616.
Rhee, S.J., Cho, S.Y., Kim, K.M., Cha, D.-S., and Park, H.-J. (2008). A comparative study of analytical methods for alkali-soluble β-glucan in medicinal mushroom, Chaga (Inonotus obliquus). LWT - Food Sci. Technol. 41(3): 545–549.
Rodrigues, M., Nimrichter, L., Cordero, R., and Casadevall, A. (2011). Fungal polysaccharides: biological activity beyond the usual structural properties. Front. Microbiol. 2: 171.
Rogers, R.D. (2012). The true tinder conk: First Nation's use. Fungi 5: 56–57.
Rop, O., Mlcek, J., and Jurikova, T. (2009). Beta-glucans in higher fungi and their health effects. Nutr. Rev. 67(11): 624–631.
Ryu, K., Nakamura, S., Nakashima, S., Aihara, M., Fukaya, M., Iwami, J., Asao, Y., Yoshikawa, M., and Matsuda, H. (2017). Triterpenes with Anti-invasive Activity from Sclerotia of Inonotus obliquus. Nat. Prod. Commun. 12(2): 225–228.
Rzymowska, J. (1998). The effect of aqueous extracts from Inonotus obliquus on the mitotic index and enzyme activities. Boll. Chim. Farm. 137(1): 13–15.
Saar, M. (1991). Fungi in Khanty folk medicine. J. Ethnopharmacol. 31(2): 175–179.
Sagayama, K., Tanaka, N., Fukumoto, T., and Kashiwada, Y. (2019). Lanostane-type triterpenes from the sclerotium of Inonotus obliquus (Chaga mushrooms) as proproliferative agents on human follicle dermal papilla cells. J. Nat. Med. 73(3): 597–601.
Scalbert, A., Manach, C., Morand, C., Rémésy, C., and Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45(4): 287–306.
Scerbak, C., Vayndorf, E.M., Hernandez, A., McGill, C., and Taylor, B.E. (2016). Mechanosensory neuron aging: differential trajectories with lifespan-extending alaskan berry and fungal treatments in Caenorhabditis elegans. Front. Aging Neurosci. 8: 173.
Shao, B.-M., Xu, W., Dai, H., Tu, P., Li, Z., and Gao, X.-M. (2004). A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem. Biophys. Res. Commun. 320(4): 1103–1111.
Sharma, E., Anand, G., and Kapoor, R. (2017). Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Ann. Bot. 119(5): 791–801.
Shashkina, M.Y., Shashkin, P., and Sergeev, A. (2006). Chemical and medicobiological properties of chaga. Pharm. Chem. J. 40(10): 560–568.
Shibnev, V., Garaev, T., Finogenova, M., Kalnina, L., and Nosik, D. (2015). Antiviral activity of aqueous extracts of the birch fungus Inonotus obliquus on the human immunodeficiency virus. Vopr. Virusol. 60(2): 35–38.
Shibnev, V., Mishin, D., Garaev, T., Finogenova, N., Botikov, A., and Deryabin, P. (2011). Antiviral activity of Inonotus obliquus fungus extract towards infection caused by hepatitis C virus in cell cultures. Bull. Exp. Biol. Med. 151(5): 612.
Shikov, A.N., Pozharitskaya, O.N., Makarov, V.G., Wagner, H., Verpoorte, R., and Heinrich, M. (2014). Medicinal Plants of the Russian Pharmacopoeia; their history and applications. J. Ethnopharmacol. 154: 520.
Shin, Y., Tamai, Y., and Terazawa, M. (2000). Chemical Constituents of Inonotus obliquus I.: A new triterpene, 3β-hydroxy-8, 24-dien-lanosta-21, 23-lactone from sclerotium. Eurasian J. Forest Res. 1: 43–50.
Shin, Y., Tamai, Y., and Terazawa, M. (2001a). Chemical Constituents of Inonotus obliquus Ⅳ.: Triterpene and Steroids from Cultured Mycelia. Eurasian J. Forest Res. 2: 27–30.
Shin, Y., Tamai, Y., and Terazawa, M. (2001b). Chemical constituents of Inonotus obliquus Ⅱ: a new triterpene, 21, 24-cyclopentalanosta-3β, 21, 25-triol-8-ene from sclerotium. J. Wood Sci. 47(4): 313–316.
Shin, Y., Yutaka, T., and Minoru, T. (2002). Triterpenoids, steroids, and a new sesquiterpen from Inonotus obliquus (Pers.: Fr.) Pilat. Int. J. Med. Mushrooms 4(2): 5ebd323c1a4ddbed.
Sim, Y.C., Lee, J.S., Lee, S., Son, Y.K., Park, J.E., Song, J.E., Ha, S.J., and Hong, E.K. (2016). Effects of polysaccharides isolated from Inonotus obliquus against hydrogen peroxide-induced oxidative damage in RINm5F pancreatic β-cells. Mol. Med. Rep. 14(5): 4263–4270.
Singdevsachan, S.K., Auroshree, P., Mishra, J., Baliyarsingh, B., Tayung, K., and Thatoi, H. (2016). Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioact. Carbohydr. Diet. Fibre 7(1): 1–14.
Solano, F. (2014). Melanins: skin pigments and much more—types, structural models, biological functions, and formation routes. New J. Sci. 2014: 498276.
Song, H.-S., Lee, Y.-J., Kim, S.-K., Moon, W.-K., Kim, D.-W., Kim, Y.-S., and Moon, K.-Y. (2004). Downregulatory effect of AGI-1120 (α-Glucosidase Inhibitor) and chaga mushroom (Inonotus obliquus) on cellular NF- κ B activation and their antioxidant activity. Saengyak Hakhoe Chi 35(1): 92–97.
Song, K.-C., Choi, B.-L., Shin, J.-W., Son, J.-Y., Yoo, H.-S., Cho, J.-H., Lee, Y.-W., Son, C.-G., and Cho, C.-K. (2007). Effects of Inonotus obliquus extracts on immunomodulating activity. J. Korean Med. 28(4): 27–41.
Song, Y., Hui, J., Kou, W., Xin, R., Jia, F., Wang, N., Hu, F., Zhang, H., and Liu, H. (2008). Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides. Curr. Microbiol. 57(5): 454–462.
Sun, J.-E., Ao, Z.-H., Lu, Z.-M., Xu, H.-Y., Zhang, X.-M., Dou, W.-F., and Xu, Z.-H. (2008). Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J. Ethnopharmacol. 118(1): 7–13.
Sun, Y., Yin, T., Chen, X.-H., Zhang, G., Curtis, R.B., Lu, Z.-H., and Jiang, J.-H. (2011). In vitro antitumor activity and structure characterization of ethanol extracts from wild and cultivated Chaga medicinal mushroom, Inonotus obliquus (Pers.: Fr.) Pilát (Aphyllophoromycetideae). Int. J. Med. Mushrooms 13(2): 121–130.
Szychowski, K.A., Rybczyńska-Tkaczyk, K., Tobiasz, J., Yelnytska-Stawasz, V., Pomianek, T., and Gmiński, J. (2018). Biological and anticancer properties of Inonotus obliquus extracts. Process Biochem. 73: 180–187.
Taguchi, T., Furue, H., Kimura, T., Kondo, T., Hattori, T., Itoh, I., and Ogawa, N. (1985). Results of phase Ⅲ study of lentinan. Gan To Kagaku Ryoho 12(2): 366–378.
Taji, S., Yamada, T., and Tanaka, R. (2008a). Three new lanostane triterpenoids, inonotsutriols A, B, and C, from Inonotus obliquus. Helv. Chim. Acta 91(8): 1513–1524.
Taji, S., Yamada, T., In, Y., Wada, S. i., Usami, Y., Sakuma, K., and Tanaka, R. (2007). Three new lanostane triterpenoids from Inonotus obliquus. Helv. Chim. Acta 90(11): 2047–2057.
Taji, S., Yamada, T., Wada, S.-I., Tokuda, H., Sakuma, K., and Tanaka, R. (2008b). Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity. Eur. J. Med. Chem. 43(11): 2373–2379.
Takikawa, H. (2006). Drug-induced liver injury by dietary supplements in Japan. Japan Med. Assoc. J. 49(9/10): 327–329.
Tanaka, R., Toyoshima, M., and Yamada, T. (2011). New lanostane-type triterpenoids, inonotsutriols D, and E, from Inonotus obliquus. Phytochem. Lett. 4(3): 328–332.
Theis, N., and Lerdau, M. (2003). The evolution of function in plant secondary metabolites. Int. J. Plant Sci. 164(S3): S93–S102.
Tian, J., Hu, X., Liu, D., Wu, H., and Qu, L. (2017). Identification of Inonotus obliquus polysaccharide with broad-spectrum antiviral activity against multi-feline viruses. Int. J. Biol. Macromol. 95: 160–167.
Tiziana, M., Stefano, G., Alessio, F., Rosa, S., Donatella, G., and Annalisa, D. (2020). Mushrooms Integrative Treatment with Inonotus obliquus and Ganoderma lucidum in a Triple Negative Breast Cancer Patient: A Case Report. World J. Breast Cancer Res. 3(1): 1017.
Tsai, C.-C., Li, Y.-S., and Lin, P.-P. (2017). Inonotus obliquus extract induces apoptosis in the human colorectal carcinoma's HCT-116 cell line. Biomed. Pharmacother. 96: 1119–1126.
Tsuboi, H., Hamer, M., Tanaka, G., Takagi, K., Kinae, N., and Steptoe, A. (2008). Responses of ultra-weak chemiluminescence and secretory IgA in saliva to the induction of angry and depressive moods. Brain Behav. Immun. 22(2): 209–214.
Van, Q., Nayak, B., Reimer, M., Jones, P., Fulcher, R., and Rempel, C. (2009). Anti-inflammatory effect of Inonotus obliquus, Polygala senega L., and Viburnum trilobum in a cell screening assay. J. Ethnopharmacol. 125(3): 487–493.
Varga, M., Berkesi, O., Darula, Z., May, N.V., and Palágyi, A. (2016). Structural characterization of allomelanin from black oat. Phytochemistry 130: 313–320.
Wang, C., Chen, Z., Pan, Y., Gao, X., and Chen, H. (2017a). Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (Ⅲ) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice. Food Chem. Toxicol. 108: 498–509.
Wang, C., Gao, X., Santhanam, R.K., Chen, Z., Chen, Y., Xu, L., Wang, C., Ferri, N., and Chen, H. (2018a). Effects of polysaccharides from Inonotus obliquus and its chromium (Ⅲ) complex on advanced glycation end-products formation, α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic L02 cells. Food Chem. Toxicol. 116: 335–345.
Wang, C., Li, W., Chen, Z., Gao, X., Yuan, G., Pan, Y., and Chen, H. (2018b). Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Res. Int. 103: 280–288.
Wang, C., Santhanam, R.K., Gao, X., Chen, Z., Chen, Y., Wang, C., Xu, L., and Chen, H. (2018c). Preparation, characterization of polysaccharides fractions from Inonotus obliquus and their effects on α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic L02 cells. J. Funct. Foods 48: 179–189.
Wang, J., Hu, W., Li, L., Huang, X., Liu, Y., Wang, D., and Teng, L. (2017b). Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLoS One 12(6): e0180476.
Wang, J., Wang, C., Li, S., Li, W., Yuan, G., Pan, Y., and Chen, H. (2017c). Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed. Pharmacother. 95: 1669–1677.
Wang, L.-X., Lu, Z.-M., Geng, Y., Zhang, X.-M., Xu, G.-H., Shi, J.-S., and Xu, Z.-H. (2014). Stimulated production of steroids in Inonotus obliquus by host factors from birch. J. Biosci. Bioeng. 118(6): 728–731.
Wang, M., Zhao, Z., Zhou, X., Hu, J., Xue, J., Liu, X., Zhang, J., Liu, P., and Tong, S. (2019). Simultaneous use of stimulatory agents to enhance the production and hypoglycaemic activity of polysaccharides from Inonotus obliquus by submerged fermentation. Molecules 24(23): 4400.
Wang, Q., Mu, H., Zhang, L., Dong, D., Zhang, W., and Duan, J. (2015). Characterization of two water-soluble lignin metabolites with antiproliferative activities from Inonotus obliquus. Int. J. Biol. Macromol. 74: 507–514.
Wang, Y., Tian, Y., Shao, J., Shu, X., Jia, J., Ren, X., and Guan, Y. (2018d). Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. Int. J. Biol. Macromol. 108: 300–306.
Wasser, S. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60(3): 258–274.
Wei, Z.-H., Chen, N., Li, Y.-J., Fan, Q.-L., Yu, T.-F., Wang, K.-X., Dong, B.-T., Fan, E.-Y., Yuan, P.-L., Hu, G.-W., Qiao, F., Ge, L., Deng, Y.-Y., Lv, Y.-N., Hu, B.-F., and Liu, L. (2018). Glucose fed-batch integrated dissolved oxygen control strategy enhanced polysaccharide, total triterpenoids and inotodiol production in fermentation of a newly isolated Inonotus obliquus strain. Process Biochem. 66: 1–6.
Wold, C.W., Gerwick, W.H., Wangensteen, H., and Inngjerdingen, K.T. (2020). Bioactive triterpenoids and water-soluble melanin from Inonotus obliquus (Chaga) with immunomodulatory activity. J. Funct. Foods 71: 104025.
Wold, C.W., Kjeldsen, C., Corthay, A., Rise, F., Christensen, B.E., Duus, J. Ø., and Inngjerdingen, K.T. (2018). Structural characterization of bioactive heteropolysaccharides from the medicinal fungus Inonotus obliquus (Chaga). Carbohydr. Polym. 185: 27–40.
Won, D.P., Lee, J.S., Kwon, D.S., Lee, K.E., Shin, W.C., and Hong, E.K. (2011). Immunostimulating activity by polysaccharides isolated from fruiting body of Inonotus obliquus. Mol. Cells 31(2): 165–173.
Wu, S.-H., Lin, Y.-T., Chern, C.-L., and Ke, S.-Y. (2018). Inonotus taiwanensis sp. nov. (Basidiomycota) from Taiwan, China. Mycoscience 59(5): 325–330.
Xiang, T., Shibuya, M., Katsube, Y., Tsutsumi, T., Otsuka, M., Zhang, H., Masuda, K., and Ebizuka, Y. (2006). A New Triterpene Synthase from Arabidopsis t-haliana Produces a Tricyclic Triterpene with Two Hydroxyl Groups. Org. Lett. 8(13): 2835–2838.
Xiang, Y., Xu, X., and Li, J. (2012). Chemical properties and antioxidant activity of exopolysaccharides fractions from mycelial culture of Inonotus obliquus in a ground corn stover medium. Food Chem. 134(4): 1899–1905.
Xiao, S., Tian, Z., Wang, Y., Si, L., Zhang, L., and Zhou, D. (2018). Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev. 38(3): 951–976.
Xu, C., Wang, B., Pu, Y., Tao, J., and Zhang, T. (2018). Techniques for the analysis of pentacyclic triterpenoids in medicinal plants. J. Sep. Sci. 41(1): 6–19.
Xu, H.-Y., Sun, J.-E., Lu, Z.-M., Zhang, X.-M., Dou, W.-F., and Xu, Z.-H. (2010a). Beneficial effects of the ethanol extract from the dry matter of a culture broth of Inonotus obliquus in submerged culture on the antioxidant defence system and regeneration of pancreatic β-cells in experimental diabetes in mice. Nat. Prod. Res. 24(6): 542–553.
Xu, L., Sang, R., Yu, Y., Li, J., Ge, B., and Zhang, X. (2019a). The polysaccharide from Inonotus obliquus protects mice from Toxoplasma gondii-induced liver injury. Int. J. Biol. Macromol. 125: 1–8.
Xu, L., Yu, Y., Sang, R., Ge, B., Wang, M., Zhou, H., and Zhang, X. (2020). Inonotus obliquus polysaccharide protects against adverse pregnancy caused by Toxoplasma gondii infection through regulating Th17/Treg balance via TLR4/NF-κB pathway. Int. J. Biol. Macromol. 146: 832–840.
Xu, T., Beelman, R.B., and Lambert, J.D. (2012). The cancer preventive effects of edible mushrooms. Anti-Cancer Agents Med. Chem. 12(10): 1255–1263.
Xu, X., Li, J., and Hu, Y. (2014b). Polysaccharides from Inonotus obliquus sclerotia and cultured mycelia stimulate cytokine production of human peripheral blood mononuclear cells in vitro and their chemical characterization. Int. Immunopharmacol. 21(2): 269–278.
Xu, X., Pang, C., Yang, C., Zheng, Y., Xu, H., Lu, Z., and Xu, Z.-H. (2010b). Antihyperglycemic and antilipidperoxidative effects of polysaccharides extracted from medicinal mushroom Chaga, Inonotus obliquus (Pers.: Fr.) Pilat (Aphyllophoromycetideae) on alloxan-diabetes mice. Int. J. Med. Mushrooms 12(3): 235–244.
Xu, X., Quan, L., and Shen, M. (2015a). Effect of chemicals on production, composition and antioxidant activity of polysaccharides of Inonotus obliquus. Int. J. Biol. Macromol. 77: 143–150.
Xu, X., Shen, M., and Quan, L. (2015b). Stimulatory agents simultaneously improving the production and antioxidant activity of polyphenols from Inonotus obliquus by submerged fermentation. Appl. Biochem. Biotechnol. 176(5): 1237–1250.
Xu, X., Wu, P., Wang, T., Yan, L., Lin, M., and Chen, C. (2019b). Synergistic effects of surfactant-assisted biodegradation of wheat straw and production of polysaccharides by Inonotus obliquus under submerged fermentation. Bioresour. Technol. 278: 43–50.
Xu, X., Wu, Y., and Chen, H. (2011a). Comparative antioxidative characteristics of polysaccharide-enriched extracts from natural sclerotia and cultured mycelia in submerged fermentation of Inonotus obliquus. Food Chem. 127(1): 74–79.
Xu, X., Yan, H., Chen, J., and Zhang, X. (2011b). Bioactive proteins from mushrooms. Biotechnol. Adv. 29(6): 667–674.
Xu, X., Zhang, X., and Chen, C. (2016a). Stimulated production of triterpenoids of Inonotus obliquus using methyl jasmonate and fatty acids. Ind. Crops Prod. 85: 49–57.
Xu, X., Zhao, W., and Shen, M. (2016b). Antioxidant activity of liquid cultured Inonotus obliquus polyphenols using tween-20 as a stimulatory agent: Correlation of the activity and the phenolic profiles. J. Taiwan Inst. Chem. Eng. 69: 41–47.
Xu, X.-Q., Hu, Y., and Zhu, L.-H. (2014a). The capability of Inonotus obliquus for lignocellulosic biomass degradation in peanut shell and for simultaneous production of bioactive polysaccharides and polyphenols in submerged fermentation. J. Taiwan Inst. Chem. Eng. 45(6): 2851–2858.
Xue, J., Tong, S., Wang, Z., and Liu, P. (2018). Chemical characterization and hypoglycaemic activities in vitro of two polysaccharides from Inonotus obliquus by submerged culture. Molecules 23(12): 3261.
Yang, S., and Zheng, W. (1994). Factors affecting accumulation of hydrolysable tannins in cultured mycelia of Inonotus obliquus. Zhong Cao Yao. 38(12): 1874–1878.
Yang, S.-F., Zhuang, T.-F., Si, Y.-M., Qi, K.-Y., and Zhao, J. (2015). Coriolus versicolor mushroom polysaccharides exert immunoregulatory effects on mouse B cells via membrane Ig and TLR-4 to activate the MAPK and NF-κB signaling pathways. Mol. Immunol. 64(1): 144–151.
Ying, Y.M., Zhang, L.Y., Zhang, X., Bai, H.B., Liang, D.E., Ma, L.F., Shan, W.G., and Zhan, Z.J. (2014). Terpenoids with alpha-glucosidase inhibitory activity from the submerged culture of Inonotus obliquus. Phytochemistry 108: 171–176.
Yogeeswari, P., and Sriram, D. (2005). Betulinic acid and its derivatives: a review on their biological properties. Curr. Med. Chem. 12(6): 657–666.
Yonei, Y., Takahashi, Y., Matsushita, K., Watanabe, M., and Yoshioka, T. (2007). Double Blind Study of Health Claims for Food Containing Extract of Kabanoanatake (Charga: Fuscoporia obliqua)(RCT: randomized controlled trial). Anti-Aging Med. 4(1): 1–10.
Yong, T., Chen, S., Liang, D., Zuo, D., Diao, X., Deng, C., Wu, Y., Hu, H., Xie, Y., and Chen, D. (2018). Actions of Inonotus obliquus against Hyperuricemia through XOD and Bioactives Screened by Molecular Modeling. Int. J. Mol. Sci. 19(10): 3222.
Youn, M.J., Kim, J.K., Park, S.Y., Kim, Y., Kim, S.J., Lee, J.S., Chai, K.Y., Kim, H.J., Cui, M.X., So, H.S., Kim, K.Y., and Park, R. (2008). Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells. World J. Gastroenterol. 14(4): 511.
Youn, M.J., Kim, J.K., Park, S.Y., Kim, Y., Park, C., Kim, E.S., Park, K.I., So, H.S., and Park, R. (2009). Potential anticancer properties of the water extract of Inontus obliquus by induction of apoptosis in melanoma B16-F10 cells. J. Ethnopharmacol. 121(2): 221–228.
Yu, J., Xiang, J.-Y., Xiang, H., and Xie, Q. (2020). Cecal Butyrate (Not Propionate) Was Connected with Metabolism-Related Chemicals of Mice, Based on the Different Effects of the Two Inonotus obliquus Extracts on Obesity and Their Mechanisms. ACS Omega. 5(27): 16690–16700.
Yu, Y., Shen, M., Song, Q., and Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 183: 91–101.
Yun, J.S., Pahk, J.W., Lee, J.S., Shin, W.C., Lee, S.Y., and Hong, E.K. (2011). Inonotus obliquus protects against oxidative stress-induced apoptosis and premature senescence. Molecules 31(5): 423–429.
Zhang, C.J., Guo, J.Y., Cheng, H., Li, L., Liu, Y., Shi, Y., Xu, J., and Yu, H.T. (2020). Spatial structure and anti-fatigue of polysaccharide from Inonotus obliquus. Int. J. Biol. Macromol. 151: 855–860.
Zhang, F.-P., Yang, Q.-Y., and Zhang, S.-B. (2016). Dual effect of phenolic nectar on three floral visitors of Elsholtzia rugulosa (Lamiaceae) in SW China. PLoS One 11(4): e0154381.
Zhang, L., Lin, D., Li, H., Yu, S., Bai, J., Ding, Z., and Wu, J. (2018). Immunopotentiating effect of Inonotus obliquus fermentation products administered at vaccination in chickens. Mol. Cell. Probes 41: 43–51.
Zhang, L., Zhang, H.-Q., Liang, X.-Y., Zhang, H.-F., Zhang, T., and Liu, F.-E. (2013a). Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII. Behav. Brain Res. 256: 72–81.
Zhang, M., Zhang, Y., Zhang, L., and Tian, Q. (2019). Mushroom polysaccharide lentinan for treating different types of cancers: A review of 12 years clinical studies in China. Prog. Mol. Biol. Transl. Sci. 163: 297–328.
Zhang, M., Zhu, L., Cui, S.W., Wang, Q., Zhou, T., and Shen, H. (2011). Fractionation, partial characterization and bioactivity of water-soluble polysaccharides and polysaccharide–protein complexes from Pleurotus geesteranus. Int. J. Biol. Macromol. 48(1): 5–12.
Zhang, N., Chen, H., Ma, L., and Zhang, Y. (2013b). Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties. Int. J. Biol. Macromol. 54: 209–215.
Zhao, F., Mai, Q., Ma, J., Xu, M., Wang, X., Cui, T., Qiu, F., and Han, G. (2015a). Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia 101: 34–40.
Zhao, F., Xia, G., Chen, L., Zhao, J., Xie, Z., Qiu, F., and Han, G. (2016a). Chemical constituents from Inonotus obliquus and their antitumor activities. J. Nat. Med. 70(4): 721–730.
Zhao, Y., He, M., Ding, J., Xi, Q., Loake, G.J., and Zheng, W. (2016b). Regulation of anticancer styrylpyrone biosynthesis in the medicinal mushroom Inonotus obliquus requires thioredoxin mediated transnitrosylation of S-nitrosoglutathione reductase. Sci. Rep. 6(1): 1–14.
Zhao, Y., Miao, K., Zhang, M., Wei, Z., and Zheng, W. (2009). Effects of nitric oxide on production of antioxidant phenolic compounds in Phaeoporus obliquus. Mycosystema 28(5): 750–754.
Zhao, Y., Xi, Q., Xu, Q., He, M., Ding, J., Dai, Y., Keller, N.P., and Zheng, W. (2015b). Correlation of nitric oxide produced by an inducible nitric oxide synthase-like protein with enhanced expression of the phenylpropanoid pathway in Inonotus obliquus cocultured with Phellinus morii. Appl. Microbiol. Biotechnol. 99(10): 4361–4372.
Zheng, W., Gu, Q., Chen, C., Yang, S., Wei, J., and Chu, C. (2007b). Aminophenols and mold-water-extracts affect the accumulation of flavonoids and their antioxidant activity in cultured mycelia of Inonotus obliquus. Mycosystema 26(3): 414–425.
Zheng, W., Liu, Y., Pan, S., Yuan, W., Dai, Y., and Wei, J. (2011a). Involvements of S-nitrosylation and denitrosylation in the production of polyphenols by Inonotus obliquus. Appl. Microbiol. Biotechnol. 90(5): 1763.
Zheng, W., Miao, K., Liu, Y., Zhao, Y., Zhang, M., Pan, S., and Dai, Y. (2010). Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl. Microbiol. Biotechnol. 87(4): 1237–1254.
Zheng, W., Miao, K., Zhang, Y., Pan, S., Zhang, M., and Jiang, H. (2009a). Nitric oxide mediates the fungal-elicitor-enhanced biosynthesis of antioxidant polyphenols in submerged cultures of Inonotus obliquus. Microbiology 155(10): 3440–3448.
Zheng, W., Xiang, X., Chen, C., Wang, Y., Zhao, Y., Jiang, J., and Chu, C. (2008a). Effects of culture media and three metal ions on the accumulation of lanosterol and ergosterol in cultured mycelia of Inonotus obliquus. Mycosystema 27(1): 126–139.
Zheng, W., Zhang, M., Zhao, Y., Miao, K., Pan, S., Cao, F., and Dai, Y. (2011b). Analysis of antioxidant metabolites by solvent extraction from sclerotia of Inonotus obliquus (Chaga). Phytochem. Anal. 22(2): 95–102.
Zheng, W., Zhang, M., Zhao, Y., Wang, Y., Miao, K., and Wei, Z. (2009b). Accumulation of antioxidant phenolic constituents in submerged cultures of Inonotus obliquus. Bioresour. Technol. 100(3): 1327–1335.
Zheng, W., Zhao, Y., Zheng, X., Liu, Y., Pan, S., Dai, Y., and Liu, F. (2011c). Production of antioxidant and antitumor metabolites by submerged cultures of Inonotus obliquus cocultured with Phellinus punctatus. Appl. Microbiol. Biotechnol. 89(1): 157–167.
Zheng, W., Zhao, Y.-X., Zhang, M., Yin, Z., Chen, C., and Wei, Z. (2008b). Phenolic compounds from Inonotus obliquus and their immune stimulating effects. Mycosystema 27(4): 574–581.
Zheng, W.-F., Liu, T., Xiang, X., and Gu, Q. (2007a). Sterol composition in field-grown and cultured mycelia of Inonotus obliquus. Acta Pharm. Sin. 42(7): 750–756.
Zhong, X., Zhong, Y., Yang, S., and Zheng, Z. (2015). Effect of Inonotus obliquus Polysaccharides on physical fatigue in mice. J. Tradit. Chin. Med. 35(4): 468–472.
Zhong, X.-H., Ren, K., Lu, S.-J., Yang, S.-Y., and Sun, D.-Z. (2009). Progress of research on Inonotus obliquus. Chin. J. Integr. Med. 15(2): 156–160.
Zhong, X.-H., Wang, L.-B., and Sun, D.-Z. (2011). Effects of inotodiol extracts from Inonotus obliquus on proliferation cycle and apoptotic gene of human lung adenocarcinoma cell line A549. Chin. J. Integr. Med. 17(3): 218–223.
Zhou, L.-W., Vlasák, J., Decock, C., Assefa, A., Stenlid, J., Abate, D., Wu, S.-H., and Dai, Y.-C. (2016). Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Divers. 77(1): 335–347.
Zhu, L., and Xu, X. (2013). Stimulatory effect of different lignocellulosic materials for phenolic compound production and antioxidant activity from Inonotus obliquus in submerged fermentation. Appl. Biochem. Biotechnol. 169(7): 2138–2152.
Zou, C.-X., Zhang, Y.-Y., Bai, M., Huang, X.-X., Wang, X.-B., and Song, S.-J. (2019). Aromatic compounds from the sclerotia of Inonotus obliquus. Nat. Prod. Res. 1–4.